勇闖新世界︰ W!o《卡夫卡村》變形祭︰感知自然‧極限‧終則有始

在《踏雪尋梅!!》一文裡,我們談過『歐拉』之『最小作用量』原理︰

那麼科學上如何看待『預言』的呢?比方講一七四四年瑞士大數學家和物理學家萊昂哈德‧歐拉 Leonhard Euler 在《尋找具有極大值或極小值性質的曲線,等周問題的最廣義解答》 Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti 論文中,非常清晰明白的給出『最小作用量原理』的定義

假使一個質量為 M,速度為 v 的粒子移動無窮小距離 ds 時。這時粒子的動量為 M \cdot v,當乘以此無窮小距離 ds 後,給出 M \cdot v \ ds ,這是粒子的動量作用於無窮小『路徑ds 距離之上。我宣稱︰在所有連結『始終』兩個端點的可能『路徑』之中,這個粒子運動的真實『軌跡』是 \int_{initial}^{final}  M \cdot v \ ds 為最小值的『路徑』;如果假定質量是個常數,也就是\int_{initial}^{final}  v \ ds 為最小值的『軌道』。

也就是說,在所有連結『始終』兩個端點的可能『路徑path 之中, 粒子所選擇的『路徑』是『作用量A = \int_{path}  M \cdot v \ ds 泛函數的『極值』,這是牛頓第二運動定律的『變分法』Variation 描述。如果從今天物理能量的觀點來看 A = \int_{path}  M \cdot v \ ds = \int_{path}  M \cdot v \ \frac {ds}{dt} dt = \int_{path}  M \cdot v^2 dt = 2 \int_{path} T dt,此處 T = \frac{1}{2} M v^2 就是粒子的動能。因為牛頓第二運動定律可以表述為 F = M \cdot a = \frac {d P}{dt}, \ P = M \cdot v,所以 \int_{path}  \frac {d P}{dt} ds = \int_{path}  \frac {d s}{dt} dP = \int_{path}  v dP  = \Delta T = \int_{path}  F ds

假使粒子所受的力是『保守力』conservative force,也就是講此力沿著任何路徑所作的『』work 只跟粒子『始終』兩個端點的『位置』有關,與它行經的『路徑』無關。在物理上這時通常將它定義成這個『力場』的『位能V = - \int_{ref}^{position}  F ds,於是如果一個粒子在一個保守場中,\Delta T + \Delta V = 0,這就是物理上『能量守恆』原理!舉例來說重力、彈簧力、電場力等等,都是保守力,然而摩擦力和空氣阻力種種都是典型的非保守力。由於 \Delta V 在這些可能路徑裡都不變,因此『最小作用量原理』所確定的『路徑』也就是『作用量A 的『極值』。一七八八年法國籍義大利裔數學家和天文學家約瑟夫‧拉格朗日 Joseph Lagrange 對於變分法發展貢獻很大,最早在其論文《分析力學》Mecanique Analytique 裡,使用『能量守恆定律』推導出了歐拉陳述的最小作用量原理的正確性。

從數學上講運動的『微分方程式』等效於對應的『積分方程式』,這本不是什麼奇怪的事,當人們開始考察它的『哲學意義』,可就引發很多不同的觀點。有人說 F = m a 就像『結果 \propto 原因』描繪『因果』的『瞬刻聯繫』關係,這是一種『決定論』,從一個『時空點』推及『無窮小時距dt 接續的另一個『時空點』,因此一旦知道『初始狀態』,就已經確定了它的『最終結局』!有人講 A = \int_{initial}^{final}  M \cdot v \ ds 彷彿確定了『目的地』無論從哪個『起始處』出發,總會有一個『通達路徑』,這成了一種『目的論』,大自然自會找到『此時此處』通向『彼時彼處』的『道路』!!各種意義『詮釋』果真耶?宛如說『花開自有因,將要為誰妍』??

所謂『科學的預言』不過是依據『條件』應用『自然律』所得到的『邏輯結論』罷了!設使『條件』正確,『定律』無誤,『推演』合理,若說『結果』不發生,怕也是『不可能』的了!也許本就不該有『環保問題』,因為對於孕育『人類生命』的『地球』理當懷著『謝天』的情懷,自然應該『愛惜保護』自己棲息的『大地』。並非是一再問著已經『氣候變遷』了嗎?或祇是不怕不悔,就怕是悔之晚矣!!

───

 

這也是『費曼』之『路徑積分』概念的古來淵源。

如果問『數學等效』的方程式,為什麼會有『哲學意義』的不同?就像薛丁格的波動方程式

i \hbar \frac{\partial}{\partial t}\Psi = \hat H \Psi

式中的 \hat{H} 是『哈密頓』Hamiltonian 算符,

哈密頓量拉格朗日量勒壤得轉換

H\left(q_j,p_j,t\right) = \sum_i \dot{q}_i p_i - L(q_j,\dot{q}_j,t)

若定義廣義座標的變換方程式和 t 無關,可以證明 H 等於總能量 E = T + V.

對一個『能量守恆』的系統而言,\hat{H} 算符通常不隨『時間』 t 改變,也就是說它只與『位置』和『動量』有關。此時若將

\Psi (t) = \Psi \cdot e^{- \frac{i \cdot E \cdot t}_{\hbar}

代入薛丁格的波動方程式,可以得到

不含時薛丁格方程式

不含時薛丁格方程式與時間無關,它預言波函數可以形成駐波,稱為定態(在原子物理學裏,又稱為軌道,例如,原子軌道分子軌道),假若能夠計算出這些定態,分析出其量子行為,則解析含時薛丁格方程式會變得更為簡易。不含時薛丁格方程式為描述定態的方程式。只有當哈密頓量不與時間顯性相關,才會使用這方程式。[註 1]廣義形式的不含時薛丁格方程式為[3]:24-27

\hat H \psi=E\psi

其中,\psi 是不含時波函數E 是能量。

這方程式的詮釋為,假若將哈密頓算符作用於波函數\psi時,得到的結果與同樣波函數\psi成正比,則波函數\psi處於定態,比例常數E 是量子態\psi的能量。在這裏,\psi標記設定的波函數和其對應的量子態。這方程式為又稱為「定態薛丁格方程式」,引用線性代數術語,這方程式為「能量本徵薛丁格方程式」,E 是「能量本徵值」,或「本徵能量」。

在三維空間裏,處於位勢 V(\mathbf{r}) 的單獨粒子,其不含時薛丁格方程式可以更具體地表示為

 - \frac{\hbar^2}{2m}\nabla^2 \psi(\mathbf{r})+V(\mathbf{r})\psi(\mathbf{r}) =E\psi(\mathbf{r})

 

從原本的『虛』、『實』對舉,變成了『時‧空』算符分殊。這個算符角色的『不對等性』,將如何與相對論之整體『四維時空觀』融會的呢?由此可知『費曼』之

路徑積分表述

量子力學路徑積分表述英語path integral formulation)是一個從經典力學裡的作用原則延伸出來對量子物理的一種概括和公式化的方法。它以包括兩點間所有路徑的和或泛函積分而得到的量子幅來取代經典力學裡的單一路徑。路徑積分表述是理論物理學家理察·費曼在 1948 年發展出來。在此之前約翰·惠勒在他的博士論文裡已經得到一些早期結果。

因爲路徑積分的表述法顯然地把時間和空間同等處理,它成為以後理論物理學發展的重要工具之一。

路徑積分表述也把量子現像和隨機現像聯繫起來。為1970年代量子場論和概括二級相變附近序參數波動的統計場論統一奠下基礎。薛丁格方程式擴散系數的擴散方程式,而路徑積分表述是把所有隨機移動路徑加起來的方法的分析延續。因此路徑積分表述在應用於量子力學前,已經在布朗運動擴散問題上被應用。

……

哈密頓算符在量子力學中的意義

哈密頓算符H是量子力學中的時間演化算符 U(t_b,t_a) 的生成算符:

U(t_b,t_a)=e^{-\frac{i}{\hbar}(t_b-t_a)H}

一個量子粒子在時刻 t_at_b 間從位置 x_a 運動到 x_b 的量子機率幅是:

iG(x_b,t_b;x_a,t_a)\equiv \left\langle x_b \right| U(t_b,t_a) \left| x_a \right\rangle

因爲 U(t_b,t_a) 是很複雜的算符函數,直接用以上定義計算 iG(x_b,t_b;x_a,t_a) 非常困難。 時間演化算符符合

U(t_b,t_a)=U(t_b,t)U(t,t_a)

因此量子幅符合

iG(x_b,t_b;x_a,t_a) = \int dx i G(x_b,t_b; x, t) iG(x, t; x_a,t_a)

此公式的物理理解為:從  (t_a,x_a)  出發,在時刻 t_b > t>t_a 先穿過位置 x 再到達 (t_b,x_b) 路徑的總量子幅是兩段路徑量子幅的積;而從 (t_a,x_a)(t_b,x_b) 的量子幅是所有這種路徑的和。

───

 

在『物理意義』論述上的重要性。

若說是否用『複數』 Complex Number 描述的『機率波』振幅已成了『物理實在』的呢?也許借著《【Sonic π】電聲學補充《二》 》文本中的故事,可以一窺這個『複數』的來歷︰

那麽要怎樣理解『複數z = x + i \ y 的呢?如果說『複數』起源於『方程式』的『求解』,比方說 x^2 + 1 = 0, \ x = \pm i,這定義了『i = \sqrt{-1}』,但是它的『意義』依然晦澀。即使說從『複數平面』的每一個『(x, y) 都對應著一個『複數z = x + i \ y 可能還是不清楚『i』的意思到底是什麼?假使再從『複數』的『加法上看』︰

假使 z_1 = x_1 + i \ y_1z_2 = x_2 + i \ y_2

那麼 z_1 + z_2 = (x_1 + x_2) + i \ (y_1 + y_2)

這是一種類似『向量』的加法,是否『i』的意義就藏在其中的呢?

positive_negative_rotation

imaginary_rotation

220px-90-Degree_Rotations_in_the_Complex_Plane

一九九八年美國新罕布希爾大學 University of New Hampshire 的
Paul J. Nahin 教授寫了一本『An Imaginary Tale: the Story of the Square Root of −1』的書,指出韋塞爾當初所講的『幾何意義 』就是︰

i = \sqrt{-1} = 1 \ \angle 90^{\circ}

也就是說『i』就是『逆時鐘旋轉九十度』的『運算子』!

假使從複數的『極座標』表示法來看複數的『乘法』︰

假 使 z_1 = r \cdot e^{i \ \theta}, \ z_2 = \alpha \cdot e^{i \ \beta},那麼 z_1 \cdot z_2 = \alpha \cdot r \cdot e^{i \ (\theta +\beta)}

就可以解釋成 Z1 『向量』被『逆時鐘旋轉』了『β』角度,它的『長度』被『縮放』了『α』倍!!

複數果真不是簡單的『』啊!也難怪它是『完備的』的喔!!

電子和工程領域中,常常會使用到『正弦』 Sin 信號,一般可以使用『相量』 Phasor 來作簡化分析。『相量』是一個『複數』,也是一種『向量』,通常使用『極座標』表示,舉例來說一個『振幅』是 A,『角頻率』是 \omega,初始『相位角』是 \theta 的『正弦信號』可以表示為 A \ e^{j \  (\omega t + \theta)},這裡的『j』就是『複數的 i』。為什麼又要改用 j = \sqrt{-1} 的呢?這是因為再『電子學』和『電路學』領域中 i 通常代表著『電流』, v 通常代表了『電壓』,因此為了避免『混淆』起見,所以才會『更名用  j』。

尤拉公式 Euler’s formula,是複數分析中的公式,它將三角函數與複數指數函數相關聯,對任意實數 x,都有

e^{j x} = \cos x + j \sin x

,它的重要性是不言而喻的啊!!

300px-Wykres_wektorowy_by_Zureks.svg

Unfasor

───

 

至於『複數』的『哲學意義』該如何說的呢??或可先參閱

【Sonic π】電聲學之電路學《四》之《 V!》‧下》文本,

細思『歐拉』所講的『可加性』說法,探究這『合理』的嗎?接著精研『現代論證』︰

假使我們將『幾何級數1 + z + z^2 + \cdots + z^n + \cdots = \frac{1}{1 - z} ,擺放到『複數平面』之『單位圓』上來『研究』,輔之以『歐拉公式z = e^{i \theta} = \cos \theta + i\sin \theta,或許可以略探『可加性』理論的『意指』。當 0 < \theta < 2 \pi 時,\cos \theta \neq 1 ,雖然 |e^{i \theta}| = 1,我們假設那個『幾何級數』 會收斂,於是得到 1 + e^{i \theta} + e^{2i \theta} + \cdots = \frac{1}{1 - e^{i \theta}} = \frac{1}{2} + \frac{1}{2} i \cot \frac{\theta}{2},所以 \frac{1}{2} + \cos{\theta} + \cos{2\theta} + \cos{3\theta} + \cdots = 0 以及 \sin{\theta} + \sin{2\theta} + \sin{3\theta} + \cdots = \frac{1}{2} \cot \frac{\theta}{2}。如果我們用 \theta = \phi + \pi 來『代換』, 此時 -\pi < \phi < \pi,可以得到【一】 \frac{1}{2} - \cos{\phi} + \cos{2\phi} - \cos{3\phi} + \cdots = 0 和【二】 \sin{\phi} - \sin{2\phi} + \sin{3\phi} - \cdots = \frac{1}{2} \tan \frac{\phi}{2}。要是在【一】式中將 \phi 設為『』的話,我們依然會有 1 - 1 + 1 - 1 + \cdots = \frac{1}{2} ;要是驗之以【二】式,當 \phi = \frac{\pi}{2} 時,原式可以寫成 1 - 0  - 1 - 0 + 1 - 0 - 1 - 0 + \cdots = \frac{1}{2}。如此看來 s = 1 + z + z^2 + z^3 + \cdots  = 1 +z s 的『形式運算』,可能是有更深層的『關聯性』的吧!!

Circle-trig6.svg

複數平面之單位圓

300px-Unit_circle_angles_color.svg

220px-Periodic_sine

假使我們將【二】式對 \phi 作『逐項微分』 得到 \cos{\phi} - 2\cos{2\phi} + 3\cos{3\phi} - \cdots = \frac{1}{4} \frac{1}{{(\cos \frac{\phi}{2})}^2},此時令 \phi = 0,就得到 1 - 2 + 3 - 4 + 5 - \cdots = \frac{1}{4}。如果把【一】式改寫成 \cos{\phi} - \cos{2\phi} + \cos{3\phi} - \cdots = \frac{1}{2} 然後對 \phi 作『逐項積分\int \limits_{0}^{\theta} ,並將變數 \theta 改回 \phi 後得到 \sin{\phi} - \frac{\sin{2\phi}}{2} + \frac{\sin{3\phi}}{3} - \cdots = \frac{\phi}{2};再做一次 作『逐項積分\int \limits_{0}^{\theta} ,且將變數 \theta 改回 \phi 後將得到 1 - \cos{\phi} - \frac{1 - \cos{2\phi}}{2^2} + \frac{1 - \cos{3\phi}}{3^2} - \cdots = \frac{\phi^2}{4},於是當 \phi = \pi 時,1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}。然而 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots =  [1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots] - [\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots] =[1 - \frac{1}{4}][1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots] ,如此我們就能得到了『巴塞爾問題』的答案 \sum \limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}。那麼

S= \ \ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + \cdots
4S=\ \ \ \ \ \ 4 + \ \ \ \ \ 8 + \ \ \ \ \ 12 + \cdots 等於
-3S= 1 - 2 + 3 - 4 + 5 - 6 + \cdots = \frac{1}{4},所以 S = - \frac{1}{12}

但是這樣的作法果真是有『道理』的嗎?假使按造『級數的極限』 之『定義』,如果『部份和S_n = \sum \limits_{k=0}^{n} a_n 之『極限S = \lim \limits_{n \to \infty} S_n 存在, S 能不滿足 S = a_0 + a_1 + a_2 + a_3 + \cdots = a_0 + (S - a_0) 的嗎?或者可以是 \sum \limits_{n=0}^{\infty} k \cdot a_n \neq k \cdot S 的呢?即使又已知 S^{\prime} = \sum \limits_{n=0}^{\infty} b_n ,還是說可能會發生 \sum \limits_{n=0}^{\infty} a_n + b_n \neq S + S^{\prime} 的哩!若是說那些都不會發生,所謂的『可加性』的『概念』應當就可以看成『擴大』且包含『舊有』的『級數的極限』 的『觀點』的吧!也許我們應當使用別種『記號法』來『表達』它,以免像直接寫作 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + \cdots = - \frac{1}{12} 般的容易引起『誤解』,畢竟是也存在著多種『可加法』的啊!至於說那些『可加法』的『意義詮釋』,就看『使用者』的吧!!

在此僅略為補充,『複數函數f(z) = \frac{1}{1 -z} 除了 z = 1 是『不連續』外,而『幾何級數1 + z + z^2 + \cdots + z^n + \cdots = \frac{1}{1 - z}  在 |z| < 1都收斂』,因是 \lim \limits_{z \to |z_1^{-}| = 1^{-}} 1 + z + z^2 + \cdots + z^n + \cdots = f(z_1)。也就是說『連續性』、『泰勒展開式』與『級數求和』等等之間有極深的『聯繫』,事實上它也與『定點理論f(x) = x 之『關係』微妙的很啊!!

220px-Casimir_plates_bubbles.svg

220px-Casimir_plates.svg

220px--Water_wave_analogue_of_Casimir_effect.ogv

一九四八年時,荷蘭物理學家『亨德里克‧卡西米爾』 Hendrik Casimir 提出了『真空不空』的『議論』。因為依據『量子場論』,『真空』也得有『最低能階』,因此『真空能量』不論因不因其『實虛』粒子之『生滅』,總得有一個『量子態』。由於已知『原子』與『分子』的『主要結合力』是『電磁力』,那麼該『如何』說『真空』之『量化』與『物質』的『實際』是怎麽來『配合』的呢?因此他『計算』了這個『可能效應』之『大小』,然而無論是哪種『震盪』所引起的,他總是得要面臨『無窮共振態\langle E \rangle = \frac{1}{2} \sum \limits_{n}^{\infty} E_n 的『問題』,這也就是說『平均』有『多少』各種能量的『光子?』所參與 h\nu + 2h\nu + 3h\nu + \cdots 的『問題』?據知『卡西米爾』用『歐拉』等之『可加法』,得到了 {F_c \over A} = -\frac {\hbar c \pi^2} {240 a^4}

此處之『- 代表『吸引力』,而今早也已經『證實』的了,真不知『宇宙』是果真先就有『計畫』的嗎?還是說『人們』自己還在『幻想』的呢??

 

,最後反觀果然『真空不空』真的可以這樣『計算』的乎!!??也許自會發現『哲學意義』的耶??!!

如果以『成住壞空』之宇宙為舞台,『墜入黑洞』就是體驗『瞬間即永恆』的歌頌!要是『自然法則』過嚴,怎麼談『心靈自主』的哩?假使沒有『物理定律』,如何講『生命演化』的呢??若問在這個『波瀾壯擴』的世界中,『 phasor  』到底是什麼??它形成的『概率波』真是表達『機會』的吧!!如是才能賦予萬物『自由』的嘛??還是我們需要創造『新數學』語言,方可摹寫

M♪o 之學習筆記本《辰》組元︰【䷀】萬象一原

之時空?甚至產生一門『新科學』的嗎??

生 ︰西方英國有學者,名作『史蒂芬‧沃爾夫勒姆』 Stephen Wolfram 創造『 Mathematica 』,曾寫

一種新科學》 A New Kind of Science

,分類『細胞自動機』, 欲究事物之本原。

Cellular automaton

Gospers_glider_gun

Oscillator

A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays.[2]

A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton.

The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway’s Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete. Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science. These include computer processors and cryptography.

The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogeneity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class are thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are reversible, where only a single configuration leads directly to a subsequent one, and totalistic, in which the future value of individual cells depend on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones.

Elementary cellular automata

The simplest nontrivial cellular automaton would be one-dimensional, with two possible states per cell, and a cell’s neighbors defined as the adjacent cells on either side of it. A cell and its two neighbors form a neighborhood of 3 cells, so there are 23 = 8 possible patterns for a neighborhood. A rule consists of deciding, for each pattern, whether the cell will be a 1 or a 0 in the next generation. There are then 28 = 256 possible rules.[4] These 256 cellular automata are generally referred to by their Wolfram code, a standard naming convention invented by Wolfram that gives each rule a number from 0 to 255. A number of papers have analyzed and compared these 256 cellular automata. The rule 30 and rule 110 cellular automata are particularly interesting. The images below show the history of each when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s. Each row of pixels represents a generation in the history of the automaton, with t=0 being the top row. Each pixel is colored white for 0 and black for 1.

Rule 30 cellular automaton

current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 0 0 1 1 1 1 0
220px-CA_rule30s
Rule 30

Rule 110 cellular automaton

current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 1 1 0 1 1 1 0

CA_rule110s

Rule 110

Rule 30 exhibits class 3 behavior, meaning even simple input patterns such as that shown lead to chaotic, seemingly random histories.

Rule 110, like the Game of Life, exhibits what Wolfram calls class 4 behavior, which is neither completely random nor completely repetitive. Localized structures appear and interact in various complicated-looking ways. In the course of the development of A New Kind of Science, as a research assistant to Wolfram in 1994, Matthew Cook proved that some of these structures were rich enough to support universality. This result is interesting because rule 110 is an extremely simple one-dimensional system, and difficult to engineer to perform specific behavior. This result therefore provides significant support for Wolfram’s view that class 4 systems are inherently likely to be universal. Cook presented his proof at a Santa Fe Institute conference on Cellular Automata in 1998, but Wolfram blocked the proof from being included in the conference proceedings, as Wolfram did not want the proof announced before the publication of A New Kind of Science.[56] In 2004, Cook’s proof was finally published in Wolfram’s journal Complex Systems (Vol. 15, No. 1), over ten years after Cook came up with it. Rule 110 has been the basis for some of the smallest universal Turing machines.[57]

△ 倘願求其詳,或可從元胞自動機始。

───

 

最終,人類知道測量是什麼也。

In an end, we know what’s the measurement.