時間序列︰生成函數《九下》

通常『具體事物』,比方講一個

骰子

骰(ㄊㄡˊ)子(臺語:十八骰仔、十八仔),亦作色(ㄕㄞˇ )子,通常作為桌上遊戲的小道具,是古老的賭具之一。骰子也是容易製作和取得的亂數產生器。

古代的骰子

歷史

骰子在五千年前西亞地區就有使用。最早期的骰子並非現在常見的正多面體,而是角錐或棒狀的,正多面體的骰子是由牛或羊的距骨刻成,古埃及、古希臘人與古羅馬人就有用距骨玩拋擲遊戲。玩法通常是將跖骨拋上,用手接下,同抓布包遊戲一樣考驗小孩的神經反應。跖骨因能擲出四面,可作為骰子遊戲,也被認為是六面骰的前身。

中國的骰子習慣在一點和四點漆上紅色,據清代趙翼考證紅四點最早為唐玄宗所使用。[1]

 

與『抽象思維』── 每面機率相等 ── 的交會處,往往是道理探索的原點,解題方法創生之零點。若問一個公正的骰子 ⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ,它的生成函數是什麼?表達成 x + x^2 +x^3 + x^4 + x^5 + x^6 意謂何哉? 是否

\frac{1}{6} x + \frac{1}{6} x^2 + \frac{1}{6} x^3 + \frac{1}{6} x^4 + \frac{1}{6} x^5 + \frac{1}{6} x^6 就更明確乎!!所以擲兩個骰子用其和比大小判輸贏之生成函數將為 {\left(  \ri\frac{1}{6} x + \frac{1}{6} x^2 + \frac{1}{6} x^3 + \frac{1}{6} x^4 + \frac{1}{6} x^5 + \frac{1}{6} x^6 \right)}^2 的吧!那麼該如何書寫

十八仔

十八仔白話字si̍p-pat-á[1][2],又稱十八啦洗芭樂喜發樂,是一種在台灣常見的擲骰子賭博遊戲,使用的器材為4顆六面骰子及一個大湯。遊戲時,玩家間會互相大喊18啦BG啦,玩笑似的來唱衰對方、鼓舞自己,玩起來十分熱鬧。

……

一般規則

  • 參與者有莊家一人及閒家數人。
  • 每局開玩前,閒家先各自下注於自己面前。接著由莊家先擲骰子,再依序由各閒家逐一擲骰子,以所得點數大小與莊家分勝負。
  • 計點方式係先扣除2顆點數相同的骰子,其餘2顆點數合計即為其所得點數。 若有兩組骰子點數相同,則以點數較大者之合計為其所得點數。
    • 因此,所得點數最大為12點,稱為「十八」(si̍p-pat);最小為3點,稱為「扁膣」(發音類似BG)。
    • 若四顆骰子正面均相同,稱為「一色」(豹子),不論點數多寡,均以勝計。
    • 若所擲骰子正面均不相同,稱為「無面」或「無點」,應重新擲至有點數為止[3]

特殊規則

  • 有些賭局規定若閒家擲出「十八」或「一色」(豹子)時,莊家得加倍賠注。
  • 有些賭局規定3顆骰子點數相同且另一顆不同,也歸為「無面」,必須重擲。
  • 有些賭局規定若莊家擲出「十八」或「一色」(豹子)時,則立即「通吃」閒家所下之注,閒家不應再擲。若莊家擲出「扁膣」,則立即「通賠」給閒家所下之注,閒家亦不應再擲。[4]

───

 

的生成函數呢??如是說來

擲筊

擲筊是一種道教信仰問卜的儀式;又稱擲筶擲杯博杯,普遍流傳於華人民間傳統社會。「筊杯」 是一種占卜工具,是世俗之人所用以與神明指示的工具。「筊杯」有時會倒過來稱之為「杯筊」。多用竹、木等材質做成,兩個為一對,呈立體的新月形狀,每一個 稱為一「支」,並分有正反面,凸起部份稱為「陰面」(也就是反面),平面的部份則稱為「陽面」(也就是正面)。儀式內容是將兩個約掌大的半月形,一面平 坦、一面圓弧凸出之筊杯擲出,以探測之意。

筊杯的大小一般以手掌能合住為原則,但也有特別製作的大型筊杯 ,在民間信仰中,特殊尺寸的筊杯也必須請示神明是否合意。大型筊杯一般是放在紙錢上,雙手握好紙錢,再將筊杯甩落,這是用在廟方人員求問重要事務時,如慶典日期、作事宜等。

臺灣,凡是道教廟宇,在神像前幾乎都有一到數對筊杯,佛教寺廟偶爾有之。臺灣民間信仰中,凡是求籤,均需要向神明擲筊確認 。「筊杯」簡稱「杯」,故臺語「擲筊」又名「博杯」。然而筊杯並非僅在廟中使用,家中有供祖先神主者,往往也會備有一對筊杯 ,如果是向新逝的死者神位求問問題,不能使用「筊杯」,只能用兩枚硬幣

今日,有許多廟宇也採用了塑膠製的筊杯。筊杯有時被宗教神棍用做騙財工具,方式是在筊杯中灌,以控制其正反面的呈現。

說明

 

台灣彰化縣鹿港天后宮展示的各種筊杯

下列是陽陰組合的說明:

  • 一陽一陰(一平一凸):稱之為「聖杯」、「允杯」(或「聖筊 」)表示神明認同,或行事會順利。但如祈求之事相當慎重,多以連三次聖杯才做數。
  • 兩陽面(兩平面):稱之為「笑杯」(或「笑筊」),表示神明一笑,還未決定要不要認同,行事狀況不明,可以重新再擲筊請示神明,或再次說清楚自己的祈求。
  • 兩陰面(兩凸面):稱之為「陰杯」、「無杯」(或「怒筊」 ),表示神明不認同,行事會不順,可以重新再擲筊請示。

尚有特殊筊型:

  • 立筊:一個或兩個筊杯直立,依習俗以金紙將之圈住保護[1]。當時,只有擲筊之人才能移動擲筊[2] 一般人擲筊多半對神明「有所求」,相傳若為「無所求」的信徒,容易擲出「立筊」,會被善信視為神蹟
  • 同心杯:兩筊杯相疊。

在民間信仰中,擲筊有幾個約定俗成的禮儀如下:

  1. 擲出允筊通常以三次為限。
  2. 擲筊前需在神靈面前說明自己姓名、歲數、生日戶籍地址、現居住址和請示的事情。
  3. 擲筊前雙手要合住一對筊杯,往神明面前參拜之後,才能鬆手讓筊杯落下。

 

少有『聖杯』原因何故也? 難到[ 機率( 反 ) + 機率( 正 )  z ]  * [ 機率( 反 ) + 機率( 正 )  z ]  不是其生成函數乎??故知簡單問題之回答實在並不易啊☆

Partition (number theory)

In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, 4 can be partitioned in five distinct ways:

4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1

The order-dependent composition 1 + 3 is the same partition as 3 + 1, while the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition 2 + 1 + 1.

A summand in a partition is also called a part. The number of partitions of n is given by the partition function p(n). So p(4) = 5. The notation λn means that λ is a partition of n.

Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials, the symmetric group and in group representation theory in general.

Partition function

In number theory, the partition function p(n) represents the number of possible partitions of a natural number n, which is to say the number of distinct ways of representing n as a sum of natural numbers (with order irrelevant). By convention p(0) = 1, p(n) = 0 for n negative.

The first few values of the partition function are (starting with p(0) = 1):

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, … (sequence A000041 in the OEIS).

The exact value of p(n) has been computed for large values of n, for example p(100) = 190,569,292, p(1000) is 24,061,467,864,032,622,473,692,149,727,991 or approximately 2.40615×1031,[3] and p(10000) is 36,167,251,325,…,906,916,435,144 or approximately 3.61673×10106.

As of June 2013, the largest known prime number that counts a number of partitions is p(120052058), with 12198 decimal digits.[4]

 

Young diagrams associated to the partitions of the positive integers 1 through 8. They are arranged so that images under the reflection about the main diagonal of the square are conjugate partitions.

Partitions of n with biggest addend k

Generating function

The generating function for p(n) is given by:[5]

\sum _{n=0}^{\infty }p(n)x^{n}=\prod _{k=1}^{\infty }\left({\frac {1}{1-x^{k}}}\right).

Expanding each factor on the right-hand side as a geometric series, we can rewrite it as

(1 + x + x2 + x3 + …)(1 + x2 + x4 + x6 + …)(1 + x3 + x6 + x9 + …) ….

The xn term in this product counts the number of ways to write

n = a1 + 2a2 + 3a3 + … = (1 + 1 + … + 1) + (2 + 2 + … + 2) + (3 + 3 + … + 3) + …,

where each number i appears ai times. This is precisely the definition of a partition of n, so our product is the desired generating function. More generally, the generating function for the partitions of n into numbers from a set A can be found by taking only those terms in the product where k is an element of A. This result is due to Euler.

The formulation of Euler’s generating function is a special case of a q-Pochhammer symbol and is similar to the product formulation of many modular forms, and specifically the Dedekind eta function.

The denominator of the product is Euler’s function and can be written, by the pentagonal number theorem, as

(1-x)(1-x^{2})(1-x^{3})\cdots =1-x-x^{2}+x^{5}+x^{7}-x^{{12}}-x^{{15}}+x^{{22}}+x^{{26}}-\cdots .

where the exponents of x on the right hand side are the generalized pentagonal numbers; i.e., numbers of the form ½m(3m − 1), where m is an integer. The signs in the summation alternate as  {\displaystyle (-1)^{|m|-1}}. This theorem can be used to derive a recurrence for the partition function:

p(k) = p(k − 1) + p(k − 2) − p(k − 5) − p(k − 7) + p(k − 12) + p(k − 15) − p(k − 22) − …

where p(0) is taken to equal 1, and p(k) is taken to be zero for negative k.