時間序列︰生成函數‧漸近展開︰白努利 □○《五》

數理論述若是簡單易明恐有掛一漏萬之失,複雜難解常生白馬非馬之病。蓋因為概念間單行、雙向蘊涵之邏輯網,前前後後密密麻麻 ,上上下下難知何為本何為末!!圜圜回回怎曉哪是頭哪是尾??此所以數學之惱人也。然而本末頭尾全是練習而來,書籍文章不過編織材料,自造學問之網自得之乎?倘有病失不在知識之過耶!

且讓我們借著等冪求和生成函數

\sum \limits_{p=0}^{\infty} S_p(n-1) \frac{x^p}{p !} = \sum \limits_{p = 0}^\infty \left({\sum \limits_{k = 0}^{n - 1} k^p}\right) \frac {x^p} {p!} = \sum \limits_{k = 0}^{n - 1} e^{k x} = \frac {e^{n x}  - 1} {e^x - 1} = G(x)

起頭,談談操作自修吧!

首先

S_0(n-1) = 0^0 + 1^0 + \cdots + {(n-1)}^0 = n ,但

G(0) = \frac {e^{n \cdot 0} - 1 } {e^0 - 1} = \frac{0}{0} ,所以得用 L’Hôpital’s rule

G(0) = \lim \limits_{x \to 0} \frac {e^{n x} - 1} {e^x - 1} = \lim \limits_{x \to 0} \frac{n e^{n x}}{e^x} = n

那麼 S_1(n-1) = 0^1 + 1^1 + \cdots + {(n-1)}^1 = \frac{n (n-1)}{2} 是否等於 \lim \limits_{x \to 0} \frac{dG(x)}{d x} = \lim \limits_{x \to 0} G^{'} (x) 呢?

G^{'} (x) = {\left( \frac{e^{n x} - 1}{e^x - 1} \right)}^{'} = \frac{n e^{n x}}{e^x -1} - \frac{e^x (e^{n x} -1)}{{(e^x - 1)}^2}

= \frac{(n-1) e^x e^{nx} - n e^{nx} + e^x} {{(e^x - 1)}^2}, \ \to \frac{(n-1) - n +1}{0} = \frac{0}{0} 。由於

{\left( (n-1) e^x e^{nx} - n e^{nx} + e^x \right)}{'} = (n-1)(e^x e^{nx} + n e^x e^{nx}) - n^2 e^{nx} + e^x ,

\to (n-1) + n(n-1) - n^2 + 1 = 0

{\left( {(e^x - 1)}^2 \right)}^{'} = 2 (e^x - 1) e^x, \ \to 0

{\left( (n-1) e^x e^{nx} - n e^{nx} + e^x \right)}{''}

= (n-1) e^x e^{nx} + 2 n (n-1) e^x e^{nx} + n^2 (n-1) e^x e^{nx} - n^3 e^{nx} + e^x,

\to (n-1) + 2 n (n-1) + n^2 (n-1) - n^3 + 1 = n^2 - n

{\left( {(e^x - 1)}^2 \right)}^{''} = 2 e^x (2 e^x - 1), \to 2

\therefore \lim \limits_{x \to 0} G^{'} (x) = \frac{n^2 - n}{2} = S_1(n-1)

莫笑作者癡,分明已有好工具︰

pi@raspberrypi:~ ipython3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)  Type "copyright", "credits" or "license" for more information.  IPython 2.3.0 -- An enhanced Interactive Python. ?         -> Introduction and overview of IPython's features. %quickref -> Quick reference. help      -> Python's own help system. object?   -> Details about 'object', use 'object??' for extra details.  In [1]: from sympy import *  In [2]: init_printing()  In [3]: n, x =symbols('n , x')  In [4]: 生成函數 = (exp(n*x) - 1)/(exp(x) -1)  In [5]: 生成函數 Out[5]:   n⋅x     ℯ    - 1 ────────   x       ℯ  - 1   In [6]: limit(生成函數, x, 0) Out[6]: n  In [7]: 生成函數一階導數 = diff(生成函數, x)  In [8]: 生成函數一階導數 Out[8]:     n⋅x   ⎛ n⋅x    ⎞  x n⋅ℯ      ⎝ℯ    - 1⎠⋅ℯ  ────── - ─────────────  x                 2   ℯ  - 1     ⎛ x    ⎞               ⎝ℯ  - 1⎠     In [9]: limit(生成函數一階導數, x, 0) Out[9]:   2     n    n ── - ─ 2    2  In [10]: 生成函數二階導數 = diff(生成函數一階導數, x)  In [11]: 生成函數二階導數 Out[11]:   2  n⋅x        x  n⋅x   ⎛ n⋅x    ⎞  x     ⎛ n⋅x    ⎞  2⋅x n ⋅ℯ      2⋅n⋅ℯ ⋅ℯ      ⎝ℯ    - 1⎠⋅ℯ    2⋅⎝ℯ    - 1⎠⋅ℯ    ─────── - ─────────── - ───────────── + ─────────────────   x                2              2                 3      ℯ  - 1    ⎛ x    ⎞       ⎛ x    ⎞          ⎛ x    ⎞                 ⎝ℯ  - 1⎠       ⎝ℯ  - 1⎠          ⎝ℯ  - 1⎠       In [12]: limit(生成函數二階導數, x, 0) Out[12]:   3    2     n    n    n ── - ── + ─ 3    2    6  In [13]:  </pre>    <span style="color: #003300;">偏偏動手作計算??!!祇為經驗來自過程哩!!??</span>  <span style="color: #003300;">為何總遇\frac{0}{0},分子分母『實』有同一『根』x = 0︰</span> <h1 id="firstHeading" class="firstHeading" lang="en"><span style="color: #ff9900;"><a style="color: #ff9900;" href="https://en.wikipedia.org/wiki/Zero_of_a_function">Zero of a function</a></span></h1> <div id="bodyContent" class="mw-body-content"> <div id="siteSub"><span style="color: #808080;">From Wikipedia, the free encyclopedia</span></div> <div id="contentSub"><span class="mw-redirectedfrom" style="color: #808080;">  (Redirected from <a class="mw-redirect" style="color: #808080;" title="Root of a function" href="https://en.wikipedia.org/w/index.php?title=Root_of_a_function&redirect=no">Root of a function</a>)</span></div> <div id="mw-content-text" class="mw-content-ltr" dir="ltr" lang="en"> <div class="thumb tright"> <div class="thumbinner"> <div> <div><a class="image" href="https://en.wikipedia.org/wiki/File:X-intercepts.svg"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/X-intercepts.svg/300px-X-intercepts.svg.png" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/X-intercepts.svg/450px-X-intercepts.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/X-intercepts.svg/600px-X-intercepts.svg.png 2x" alt="A graph of the function cos(x) on the domain '"`UNIQ--postMath-00000001-QINU`"', with x-intercepts indicated in red. The function has zeroes where x is '"`UNIQ--postMath-00000002-QINU`"', '"`UNIQ--postMath-00000003-QINU`"', '"`UNIQ--postMath-00000004-QINU`"' and '"`UNIQ--postMath-00000005-QINU`"'." width="300" height="300" data-file-width="800" data-file-height="800" /></a></div> </div> <div class="thumbcaption"> <div class="magnify"></div> <span style="color: #999999;">A graph of the function cos(<i>x</i>) on the domain <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8e03bf1e49393bd0adf23e73fc71a0256ea9183" alt="\scriptstyle {[-2\pi ,2\pi ]}" /></span>, with <i>x</i>-intercepts indicated in red. The function has <b>zeroes</b> where <i>x</i> is <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c3d59f4d6b49fcbf821c20d289a07a165c8fbeb" alt="\scriptstyle {\frac {-3\pi }{2}}" /></span>, <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65116414d45766470561a9e377704e72ef89ecb9" alt="\scriptstyle {\frac {-\pi }{2}}" /></span>, <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13eb5861c2ff7a77b4c7da40c74dc6e1730de0f7" alt="\scriptstyle {\frac {\pi }{2}}" /></span> and <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a83e8c170b496ff819f5734dbbde8da5693a0d85" alt="\scriptstyle {\frac {3\pi }{2}}" /></span>.</span>  </div> </div> </div> <span style="color: #808080;">In <a style="color: #808080;" title="Mathematics" href="https://en.wikipedia.org/wiki/Mathematics">mathematics</a>, a <b>zero</b>, also sometimes called a <b>root</b>, of a real-, complex- or generally <a style="color: #808080;" title="Vector-valued function" href="https://en.wikipedia.org/wiki/Vector-valued_function">vector-valued function</a> <i>f</i> is a member <i>x</i> of the <a style="color: #808080;" title="Domain of a function" href="https://en.wikipedia.org/wiki/Domain_of_a_function">domain</a> of <i>f</i> such that <i>f</i>(<i>x</i>) <b>vanishes</b> at <i>x</i>; that is, <i>x</i> is a <a class="mw-redirect" style="color: #808080;" title="Solution (equation)" href="https://en.wikipedia.org/wiki/Solution_%28equation%29">solution</a> of the <a style="color: #808080;" title="Equation" href="https://en.wikipedia.org/wiki/Equation">equation</a></span> <dl>  	<dd><span class="texhtml" style="color: #808080;"><i>f</i>(<i>x</i>) = 0.</span></dd> </dl> <span style="color: #808080;">In other words, a "zero" of a function is an input value that produces an output of zero (0).<sup id="cite_ref-Foerster_1-0" class="reference"><a style="color: #808080;" href="https://en.wikipedia.org/wiki/Zero_of_a_function#cite_note-Foerster-1">[1]</a></sup></span>  <span style="color: #808080;">A <b>root</b> of a <a style="color: #808080;" title="Polynomial" href="https://en.wikipedia.org/wiki/Polynomial">polynomial</a> is a zero of the corresponding <a class="mw-redirect" style="color: #808080;" title="Polynomial function" href="https://en.wikipedia.org/wiki/Polynomial_function">polynomial function</a>. The <a style="color: #808080;" title="Fundamental theorem of algebra" href="https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra">fundamental theorem of algebra</a> shows that any non-zero <a style="color: #808080;" title="Polynomial" href="https://en.wikipedia.org/wiki/Polynomial">polynomial</a> has a number of roots at most equal to its <a style="color: #808080;" title="Degree of a polynomial" href="https://en.wikipedia.org/wiki/Degree_of_a_polynomial">degree</a> and that the number of roots and the degree are equal when one considers the <a style="color: #808080;" title="Complex number" href="https://en.wikipedia.org/wiki/Complex_number">complex</a> roots (or more generally the roots in an <a class="mw-redirect" style="color: #808080;" title="Algebraically closed extension" href="https://en.wikipedia.org/wiki/Algebraically_closed_extension">algebraically closed extension</a>) counted with their <a style="color: #808080;" title="Multiplicity (mathematics)" href="https://en.wikipedia.org/wiki/Multiplicity_%28mathematics%29">multiplicities</a>. For example, the polynomial <i>f</i> of degree two, defined by</span> <dl>  	<dd><span class="mwe-math-element" style="color: #808080;"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7375440b6aef5c197e3d9ea2d21d4afef996f403" alt="f(x)=x^{2}-5x+6" /></span></dd> </dl> <span style="color: #808080;">has the two roots 2 and 3, since</span> <dl>  	<dd><span class="mwe-math-element" style="color: #808080;"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f200f566bf0913f6b8d6a4c267fc7874c47fc39" alt="f(2)=2^{2}-5\cdot 2+6=0\quad \textstyle {\rm {and}}\quad f(3)=3^{2}-5\cdot 3+6=0." /></span></dd> </dl> <span style="color: #808080;">If the function maps <a style="color: #808080;" title="Real number" href="https://en.wikipedia.org/wiki/Real_number">real numbers</a> to real numbers, its zeroes are the <i>x</i>-coordinates of the points where its <a style="color: #808080;" title="Graph of a function" href="https://en.wikipedia.org/wiki/Graph_of_a_function">graph</a> meets the <a class="mw-redirect" style="color: #808080;" title="X-axis" href="https://en.wikipedia.org/wiki/X-axis"><i>x</i>-axis</a>. An alternative name for such a point (<i>x</i>,0) in this context is an <b><i>x</i>-intercept</b>.</span>  </div> </div> <h2><span id="Solution_of_an_equation" class="mw-headline" style="color: #808080;">Solution of an equation</span></h2> <span style="color: #808080;">Every <a style="color: #808080;" title="Equation" href="https://en.wikipedia.org/wiki/Equation">equation</a> in the <a class="mw-redirect" style="color: #808080;" title="Unknown (mathematics)" href="https://en.wikipedia.org/wiki/Unknown_%28mathematics%29">unknown</a> <span class="texhtml"><i>x</i></span> may be rewritten as</span> <dl>  	<dd><span class="texhtml" style="color: #808080;"><i>f</i>(<i>x</i>) = 0</span></dd> </dl> <span style="color: #808080;">by regrouping all terms in the left-hand side. It follows that the solutions of such an equation are exactly the zeros of the function <span class="texhtml"><i>f</i></span>. In other words, "zero of a function" is a phrase denoting a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.</span> <h2><span id="Polynomial_roots" class="mw-headline" style="color: #808080;">Polynomial roots</span></h2> <div class="hatnote"><span style="color: #808080;">Main article: <a style="color: #808080;" title="Properties of polynomial roots" href="https://en.wikipedia.org/wiki/Properties_of_polynomial_roots">Properties of polynomial roots</a></span></div> <span style="color: #808080;">Every real polynomial of odd <a style="color: #808080;" title="Degree of a polynomial" href="https://en.wikipedia.org/wiki/Degree_of_a_polynomial">degree</a> has an odd number of real roots (counting <a style="color: #808080;" title="Multiplicity (mathematics)" href="https://en.wikipedia.org/wiki/Multiplicity_%28mathematics%29#Multiplicity_of_a_root_of_a_polynomial">multiplicities</a>); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because one is the smallest odd whole number), whereas even polynomials may have none. This principle can be proven by reference to the <a style="color: #808080;" title="Intermediate value theorem" href="https://en.wikipedia.org/wiki/Intermediate_value_theorem">intermediate value theorem</a>: since polynomial functions are <a style="color: #808080;" title="Continuous function" href="https://en.wikipedia.org/wiki/Continuous_function">continuous</a>, the function value must cross zero in the process of changing from negative to positive or vice versa.</span> <h3><span id="Fundamental_theorem_of_algebra" class="mw-headline" style="color: #808080;">Fundamental theorem of algebra</span></h3> <div class="hatnote"><span style="color: #808080;">Main article: <a style="color: #808080;" title="Fundamental theorem of algebra" href="https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra">Fundamental theorem of algebra</a></span></div> <span style="color: #808080;">The fundamental theorem of algebra states that every polynomial of degree <i>n</i> has <i>n</i> complex roots, counted with their multiplicities. The non-real roots of polynomials with real coefficients come in <a style="color: #808080;" title="Complex conjugate" href="https://en.wikipedia.org/wiki/Complex_conjugate">conjugate</a> pairs.<sup id="cite_ref-Foerster_1-1" class="reference"><a style="color: #808080;" href="https://en.wikipedia.org/wiki/Zero_of_a_function#cite_note-Foerster-1">[1]</a></sup> <a style="color: #808080;" title="Vieta's formulas" href="https://en.wikipedia.org/wiki/Vieta%27s_formulas">Vieta's formulas</a> relate the coefficients of a polynomial to sums and products of its roots.</span>     <span style="color: #003300;">『虛』、『實』分殊言『解析』,『求根』理則道之深︰</span> <h1 id="firstHeading" class="firstHeading" lang="zh-TW"><span style="color: #ff9900;"><a style="color: #ff9900;" href="https://zh.wikipedia.org/zh-tw/%E4%BB%A3%E6%95%B0%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86">代數基本定理</a></span></h1> <span style="color: #808080;"><b>代數基本定理</b>說明,任何一個一元複係數<a class="mw-redirect" style="color: #808080;" title="方程式" href="https://zh.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B%E5%BC%8F">方程式</a>都至少有一個複數<a style="color: #808080;" title="根 (數學)" href="https://zh.wikipedia.org/wiki/%E6%A0%B9_%28%E6%95%B0%E5%AD%A6%29">根</a>。也就是說,<a class="mw-redirect" style="color: #808080;" title="複數" href="https://zh.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0">複數</a><a class="mw-disambig" style="color: #808080;" title="域" href="https://zh.wikipedia.org/wiki/%E5%9F%9F">域</a>是<a class="mw-redirect" style="color: #808080;" title="代數封閉域" href="https://zh.wikipedia.org/wiki/%E4%BB%A3%E6%95%B0%E5%B0%81%E9%97%AD%E5%9F%9F">代數封閉</a>的。</span>  <span style="color: #808080;">有時這個定理表述為:任何一個非零的一元n次複係數多項式,都正好有n個複數根。這似乎是一個更強的命題,但實際上是「至少有一個根」的直接結果,因為不斷把多項式除以它的線性因子,即可從有一個根推出有n個根。</span>  <span style="color: #808080;">儘管這個定理被命名為「代數基本定理」,但它還沒有純粹的代數證明,許多數學家都相信這種證明不存在。<sup id="cite_ref-1" class="reference"><a style="color: #808080;" href="https://zh.wikipedia.org/zh-tw/%E4%BB%A3%E6%95%B0%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86#cite_note-1">[1]</a></sup>另外,它也不是最基本的代數定理;因為在那個時候,代數基本上就是關於解實係數或複係數多項式方程,所以才被命名為代數基本定理。</span>  <span style="color: #808080;"><a style="color: #808080;" title="卡爾·弗里德里希·高斯" href="https://zh.wikipedia.org/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E9%87%8C%E5%B8%8C%C2%B7%E9%AB%98%E6%96%AF">高斯</a>一生總共對這個定理給出了四個證明,其中第一個是在他22歲時(1799年)的博士論文中給出的。高斯給出的證明既有幾何的,也有函數的,還有積分的方法。高斯關於這一<a style="color: #808080;" title="命題" href="https://zh.wikipedia.org/wiki/%E5%91%BD%E9%A2%98">命題</a>的證明方法是去證明其根的<a class="mw-redirect" style="color: #808080;" title="存在性" href="https://zh.wikipedia.org/wiki/%E5%AD%98%E5%9C%A8%E6%80%A7">存在性</a>,開創了關於研究存在性命題的新途徑。</span>  <span style="color: #808080;">同時,高次代數方程的求解仍然是一大難題。<a style="color: #808080;" title="伽羅瓦理論" href="https://zh.wikipedia.org/wiki/%E4%BC%BD%E7%BE%85%E7%93%A6%E7%90%86%E8%AB%96">伽羅瓦理論</a>指出,對於一般五次以上的方程,不存在一般的代數解。</span>     <span style="color: #003300;">白努利數有其原,既不在分子</span>  <span style="color: #003300;">e^{nx} - 1 = \sum \limits_{k=1}^{\infty} \frac{{(nx)}^k}{k !},又不在分母</span>  <span style="color: #003300;">e^{x} - 1 = \sum \limits_{k=1}^{\infty} \frac{x^k}{k !},</span>  <span style="color: #003300;">唯因分母反演倒數\frac{1}{e^{x} - 1}來☆</span>  <span style="color: #003300;">B_0 = 1始其數,B_0等於\lim \limits_{x \to 0} G_B(x) = 1定其義。</span>  <span style="color: #003300;">故其『形式』判之為\frac{\alpha \cdot x}{e ^x -1},『實』無『零』根矣。</span>  <span style="color: #003300;">故得\lim \limits_{x \to 0} \frac{\alpha \cdot x}{e ^x -1} = \lim \limits_{x \to 0} \frac{\alpha}{e^x}  = \alpha = 1 $ 了☆