時間序列︰生成函數‧漸近展開︰當白努利遇上傅立葉《IV》

如果 n 是巨量 H \approx \infty\therefore \frac{1}{k^{2H}}, \frac{1}{k^{2H+1}} \approx 0 。此時白努利多項式的傅立葉級數

B_{2n} (x) = {(-1)}^{n+1} \frac{2 (2n)!}{{(2 \pi )}^{2n}} \sum \limits_{k=1}^{\infty}  \frac{\cos(2 \pi k \cdot x)}{k^{2n}}

B_{2n+1} (x) = {(-1)}^{n+1} \frac{2 (2n+1)!}{{(2 \pi )}^{2n+1}} \sum \limits_{k=1}^{\infty}  \frac{\sin(2 \pi k \cdot x)}{k^{2n+1}}

只剩 k=1 單項主導,趨近於

B_{2H} (x) \approx {(-1)}^{H+1} \frac{2 (2H)!}{{(2 \pi )}^{2H}} \cos(2 \pi  \cdot x)

B_{2H+1} (x) \approx {(-1)}^{H+1} \frac{2 (2H+1)!}{{(2 \pi )}^{2H+1}} \sin (2 \pi  \cdot x)

故於 [0,1] 閉區間裡

B_{2H} (x) = 0, \ x = \frac{1}{4} ,  \frac{3}{4}

B_{2H+1} (x) = 0, \ x = 0 ,  \frac{1}{2} , 1

 

這時回顧先前『根』之考察︰

且讓我們嘗試運用此法更精細定位偶次 2n 類在閉區間 [0, 1] 之根 B_{2n} (x) = 0 吧。此處重複使用

◎ 乘法公式

m^{1-n} \cdot B_n (m \cdot x) = \sum \limits_{k=0}^{m-1} B_n (x + \frac{k}{m} ), \ m \ge 1

◎ 對稱公式

B_n (1-x) = {(-1)}^n B_n (x), \ n \ge 0

簡單運算可得︰

B_{2n} (\frac{1}{2}) = (2^{1-2n} -1) B_{2n}

B_{2n} (\frac{1}{2}) + B_{2n} (\frac{1}{2} + \frac{1}{2}) = 2^{1-2n} \cdot B_{2n} (2 \cdot \frac{1}{2})

B_{2n} (1) = B_{2n} (0) = B_{2n}

B_{2n} (\frac{1}{4}) = B_{2n} (\frac{3}{4}) = 2^{-2n} B_{2n} (\frac{1}{2}) = 2^{-2n} (2^{1-2n} -1) B_{2n}

B_{2n} (\frac{1}{4}) + B_{2n} (\frac{1}{4} + \frac{1}{2}) = 2^{1-2n} \cdot B_{2n} (2 \cdot \frac{1}{4})

B_{2n} (\frac{1}{4}) = B_{2n}(\frac{3}{4})

B_{2n} (\frac{1}{3}) = B_{2n} (\frac{2}{3}) = 2^{-1} (3^{1-2n} - 1) B_{2n}

B_{2n} (\frac{1}{3}) + B_{2n} (\frac{1}{3} + \frac{1}{3}) + B_{2n} (\frac{1}{3} + \frac{2}{3}) = 3^{1-2n} \cdot B_{2n} (3 \cdot \frac{1}{3})

B_{2n} (\frac{1}{3}) = B_{2n} (\frac{2}{3})

B_{2n} (\frac{1}{6}) = B_{2n} (\frac{5}{6}) = (2^{1-2n} -1)(3^{1-2n} -1) \frac{B_{2n}}{2}

B_{2n} (\frac{1}{6}) + B_{2n} (\frac{1}{6} + \frac{1}{2}) = 2^{1-2n} \cdot B_{2n} ( 2 \cdot \frac{1}{6})

B_{2n} (\frac{1}{6}) = (2^{1-2n} -1) B_{2n} (\frac{1}{3})

因 此可以歸結的說︰當 n \ge 1 時, B_{2n} (\frac{1}{2}) 以及 B_{2n} (\frac{1}{3})B_{2n} (\frac{1}{4})B_{2n} 異號。然而 B_{2n} (\frac{1}{6})B_{2n} 同號。故知 B_{2n} = 0 有一根 r 落在 (\frac{1}{6}, \frac{1}4}) 開區間中。因著『偶對稱性』的要求,另一根定然是 1 - r ,且知其落於 (\frac{3}{4}, \frac{5}{6}) 開區間也☆☆

─── 摘自《時間序列︰生成函數‧漸近展開︰白努利多項式之根《六》

 

暗示著 r_{2n} 將越來越大,當 n \to \infty 時, r_{2n} \to \frac{1}{4} 了。可借著數值計算驗證如下︰

pi@raspberrypi:~ ipython3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)  Type "copyright", "credits" or "license" for more information.  IPython 2.3.0 -- An enhanced Interactive Python. ?         -> Introduction and overview of IPython's features. %quickref -> Quick reference. help      -> Python's own help system. object?   -> Details about 'object', use 'object??' for extra details.  In [1]: from sympy import *  In [2]: init_printing()  In [3]: x = symbols('x')  In [4]: nsolve(bernoulli(2,x), x, 0) Out[4]: mpf('0.21132486540518768')  In [5]: nsolve(bernoulli(4,x), x, 0) Out[5]: mpf('0.24033518882038574')  In [6]: nsolve(bernoulli(6,x), x, 0) Out[6]: mpf('0.24754071624367329')  In [7]: nsolve(bernoulli(8,x), x, 0) Out[7]: mpf('0.24938038392266992')  In [8]:  </pre>    <span style="color: #003300;">若說有人能用那個傅立葉展開式證明</span>  <span style="color: #003300;">\frac{1}{4} - \frac{1}{\pi \cdot 2^{2n}} < r_{2n} < r_{2(n+1)} < \frac{1}{4}, \ n \ge 1</span>  <span style="color: #003300;">,豈不令人大感好奇!!事實上這個證明還算簡單??首先是<a style="color: #003300;" href="http://www.freesandal.org/?p=68548">二分逼近法</a>之判定式︰</span>  <span style="color: #003300;">已知B_{2m} ( \frac{1}{4} ) \cdot B_{2m} < 0, m \ge 1,假使算得</span>  <span style="color: #003300;">B_{2(n+1)} (r_{2n}) \cdot B_{2(n+1)} > 0,那麼</span>  <span style="color: #003300;">r_{2n} < r_{2(n+1)}。</span>  <span style="color: #003300;">,然後再應用若干不等式而已!!?? </span>  <span style="color: #ff9900;">【<a style="color: #ff9900;" href="https://zh.wikipedia.org/zh-tw/%E9%BB%8E%E6%9B%BC%CE%B6%E5%87%BD%E6%95%B8">黎曼ζ函數</a>不等式】</span>1 < \zeta({2n}) = \sum \limits_{k=1}^{\infty} \frac{1}{k^{2n}} \le 1 + \frac{2n+1}{2n-1} \cdot \frac{1}{2^{2n}} \le 1 + \frac{3}{2^{2n}} \le 1 + \frac{3}{4} < 2。  <span style="color: #003300;">\sum \limits_{k=3}^{\infty} \frac{1}{k^{2n}} \le \sum \limits_{k=3}^{\infty}  \int_{k-1}^{k} \frac{dt}{t^{2n}} = \int_{2}^{\infty} \frac{dt}{t^{2n}} = \frac{2}{2n - 1} \cdot \frac{1}{2^{2n}}</span>  <span style="color: #003300;">1 < \sum \limits_{k=1}^{\infty} \frac{1}{k^{2n}} \le 1 + \frac{1}{2^{2n}} + \frac{2}{2n-1} \cdot \frac{1}{2^{2n}} = 1 + \frac{2n+1}{2n-1} \frac{1}{2^{2n}}</span>  <span style="color: #003300;">\lim \limits_{n \to \infty} \sum \limits_{k=1}^{\infty} \frac{1}{k^{2n}}  = 1。</span>  <span style="color: #003300;">而且n \ge 1, 4n - 4 \ge 0, 3(2n-1) - (2n+1) = 4n-4 \ge 0,所以</span>  <span style="color: #003300;">1 < \sum \limits_{k=1}^{\infty} \frac{1}{k^{2n}} \le 1+ 3 \cdot \frac{1}{2^2} = 1 + \frac{3}{4}。</span>     <span style="color: #ff9900;">【\sin(x) \le x, \ x \ge0】</span>  <div class="wc-shortcodes-row wc-shortcodes-item wc-shortcodes-clearfix"> <div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-one-half wc-shortcodes-column-first ">  <a href="http://www.freesandal.org/wp-content/uploads/sin-x.gif"><img class="alignnone size-full wp-image-16428" src="http://www.freesandal.org/wp-content/uploads/sin-x.gif" alt="sin-x" width="202" height="174" /></a>  <span style="color: #808080;"><strong>\lim \limits_{x \to 0} \frac{\sin(x)}{x} = 1證明圖</strong></span>  </div>  <div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-one-half wc-shortcodes-column-last ">  舉例來說,左圖中『<strong>三角形</strong>』\triangle OBB^{'}的面積,小於『<strong>扇形</strong>』\sphericalangle OBB^{'},更小於『<strong>四邊形</strong>』\Box OBCB^{'},於是\sin{\theta} \cos{\theta} < \theta < \tan{\theta},因此\cos{\theta} < \frac{ \theta}{\sin{\theta} } < \frac{1}{\cos{\theta}}</div> </div>  ─── 摘自《<a href="http://www.freesandal.org/?p=16315">【Sonic π】電路學之補充《四》無窮小算術‧中上</a>》     <span style="color: #003300;">顯然扇形\sphericalangle OBB^{'}之『弧邊長』大於三角形\triangle OBB^{'}的『弦長』也 。\therefore x > \sin (x), \ x>0。</span>  <span style="color: #003300;">◎\cos (x) > 1 - \frac{x^2}{2}, \ x > 0</span>  <span style="color: #003300;">考慮f(x) = \cos(x) - \left( 1 - \frac{x^2}{2} \right),因此</span>  <span style="color: #003300;">f(0) = 0,而且</span>  <span style="color: #003300;">f^{'} (x) = - \sin (x) + x > 0, \ x >0,故知</span>  <span style="color: #003300;">f (x)為恒增函數也,得證矣。</span>  <span style="color: #003300;">同法可證</span>  <span style="color: #003300;">◎\sin (x) > x - \frac{x^3}{6}, \ x > 0呦。</span>  <span style="color: #003300;">最後確認</span>  <span style="color: #003300;">B_{2n} (\frac{1}{4} - \frac{1}{\pi \cdot 2^{2n}} ) \cdot B_{2n} ,以及</span>  <span style="color: #003300;">B_{2(n+2)} (r_{2n} ) \cdot B_{2(n+1)} $

之『正負號』為『正』,應留與善學好思之讀者的吧☆