GoPiGo 小汽車︰格點圖像算術《投影幾何》【五‧線性代數】《導引五》

一次再次閱讀相同的文章,令人驚訝的是次次理解都不同◎

如何閱讀□○??

一九四零年,美國哲學家莫蒂默‧傑爾姆‧阿德勒 Mortimer Jerome Adler 寫了一本《如何閱讀一本書》的書。其後於一九七二年,美國哥倫比亞大學的教授查爾斯‧范多倫 Charles Van Doren 重新修訂。這本書主要論述如何『通過閱讀』增進『理解力』。《如何閱讀一本書》將閱讀分做四個層次『基礎閱讀』、『檢視閱讀』、『分析閱讀』和『主題閱讀』。並在書後推薦了一系列的『經典名著』。『 目的』是強調閱讀是一種『自主活動』。

金文大篆智
蛛網

其實『知識』如同『蛛網』,經由各種『學習渠道』與『自身經驗』,逐步建立起來。果真能像『蜘蛛』一樣,牽一髮而動全身的去『捕捉』,又何止是談『閱讀』一本書?智慧不只可以『閱讀』一個『時代』! 更能夠『閱讀』整個『自然』與『社會』的啊!!

 

來來回回又回到『透視性』之『抽象』定義︰

Projective geometry

In projective geometry the points of a line are called a projective range, and the set of lines in a plane on a point is called a pencil.

Given two lines  \ell and  m in a plane and a point P of that plane on neither line, the bijective mapping between the points of the range of  \ell and the range of  m determined by the lines of the pencil on P is called a perspectivity (or more precisely, a central perspectivity with center P).[4] A special symbol has been used to show that points X and Y are related by a perspectivity;  X \doublebarwedge Y . In this notation, to show that the center of perspectivity is P, write  X \ \overset {P}{\doublebarwedge} \ Y. Using the language of functions, a central perspectivity with center P is a function f_P \colon [\ell] \mapsto [m] (where the square brackets indicate the projective range of the line) defined by f_P (X) = Y \text{ whenever } P \in XY.[5] This map is an involution, that is, f_P (f_P (X)) = X \text{ for all }X \in [\ell].

The existence of a perspectivity means that corresponding points are in perspective. The dual concept, axial perspectivity, is the correspondence between the lines of two pencils determined by a projective range.

 

既已有了『賦值』辦法、『定位』方案

 

,那麼 f_P 將如何『表達』呢?

假設

A \  {\overset {P}{\doublebarwedge }} \ A^{'}B \  {\overset {P}{\doublebarwedge }} \ B^{'}C \  {\overset {P}{\doublebarwedge }} \ C^{'}

\overline{AB} 是線 l 上的『單位長度』,任意一點 C 之『賦值』為 t = \frac{\overline{CA}}{\overline{CB}} = \frac{x}{x -1}, \ x =_{df} \frac{\overline{CA}}{\overline{AB}} 。對應之

\overline{A^{'}B{'}} 是線 l^{'} 上的『單位長度』,任意一點 C^{'} 之『賦值』為 t^{'} = \frac{\overline{C^{'}A^{'}}}{\overline{C^{'}B^{'}}} = \frac{y}{y -1}, \ y =_{df} \frac{\overline{C^{'}A^{'}}}{\overline{A^{'}B^{'}}}

依據『幾何事實』

\frac{\frac{\overline{CA}}{\overline{CB}}}{\frac{\overline{C^{'}A^{'}}}{\overline{C^{'}B{'}}} } = \frac{\frac{\overline{PA}}{\overline{PB}}}{\frac{\overline{PA^{'}}}{\overline{PB^{'}}}} = constant = \frac{1}{k} = \frac{t}{t^{'}} ,因此

f_P ={\begin{cases} k \cdot t,&{\mbox{if }} t \in l \\ \frac{t^{'}}{k} ,&{\mbox{if }} t^{'} \in l^{'} \end{cases}

 

為什麼 f_P 彷彿『 case by case 』耶??因為

f_P(X) = Y \ whenever \ P \in XY 辭義使然。如是當然

f_P(f_P(C))  \equiv f_P(C^{'}) = f_P(k \cdot t) = \frac{1}{k} \cdot (k \cdot t) = t \equiv C 乎!!

 

此處 t^{'}t 似乎有『簡單』『線性』關係◎

如果選擇 x, y 來描述,已知

\frac{y}{y-1} = k \left( \frac{x}{x-1} \right) 。那麼

f_P ={\begin{cases}  \frac{x}{(1- \frac{1}{k}) x + \frac{1}{k}},&{\mbox{if }} x \in l \\ \frac{y}{(1-k)y +k} ,&{\mbox{if }} y \in l^{'} \end{cases}

 

不單『非線性』而且『複雜』的哩★

宛如『投影』概念之『相對論』呀☆

300px-Standard_conf

伽利略變換

\begin{bmatrix} x^{\prime} \\ t^{\prime} \end{bmatrix} = \begin{pmatrix} 1 & -v \\0 & 1 \end{pmatrix} \begin{bmatrix} x \\ t \end{bmatrix}

220px-Light_cone

時空圖

Galilean_transform_of_world_line

Lorentz_transforms_2.svg

勞侖茲變換

\begin{bmatrix} x^{\prime} \\ t^{\prime} \end{bmatrix} =  \frac{1}{\sqrt{1 - {(\frac{v}{c})}^2}}  \begin{pmatrix} 1 & -v \\ -\frac{v}{c^2} & 1 \end{pmatrix} \begin{bmatrix} x \\ t \end{bmatrix}

220px-Hyperbo

300px-Minkowski_lightcone_lorentztransform_inertial.svg

300px-Minkowski_lightcone_lorentztransform.svg

Lorentz_transform_of_world_line

運動是第一義』它意指什麼的呢?如果考察人們對『時間』的『認識』,總離不開對物體『運動』的『觀察』。之前在《時間是什麼??》一文裡,我們談到了『古典物理』是以『牛頓第一運動定律』所指稱的『慣性座標系觀察者』之『時空觀』為『基礎』的。『牛頓』假設『存在』一個對所有的『慣性座標系』中『觀察者』都『相同』並且『恆定恆速』的『時間之流』,自此『時間』就成為『第一義』的了。也就是說如果『□觀察者』說『兩事件』『同時發生』,『○觀察者』也講那『兩事件』『同時發生』。因而『第一運動定律』──  假使沒有外力作用,靜者恆靜,動者作等速直線運動,在『第二運動定律』的強大光芒『覆照』下,反倒顯得晦暗不明的了,宛如是個『力等於零』的『特例』一般。於是『速度v 的『定義v = \frac{\Delta x}{\Delta t} 與『相對速度』是 v 的『』個『慣性座標系』彷彿是『同義語』。殊不知這個『相對速度』是『』個『觀察者』之『互見』,而且『運動方向』相反,並不能『自見』的啊!要是說果真能夠『自見』又豈會自己『無法度量』的呢?於是乎有『無窮多』個『慣性觀察者』各以『無限種』之『相對速度』『運動』,然而他們所『觀察到』的『自然律』都是一樣的,這就是『慣性』的『本義』。其實『觀察者』之『概念』有一點像『抽象擬人化』的說法,比方說,一個『對我而言』運動中的『粒子』,在『粒子』自己的『慣性座標系』裡,『自然律』一樣的『適用』。如此『對我而言』可用『我的時空』將那個『粒子』標示在『我的時空圖(x_{\Box}, t_{\Box}) 上,一個與『粒子偕行』相對『靜止』的『觀察者』,就把『我的運動』畫在『他的時空圖(x_{\bigcirc}, t_{\bigcirc}) 上的了。這個『互為動靜』的『論述』就是『相對運動』的『實質』,並不存在『絕對運動』的啊。所以『我說』『那個粒子』在 t_{p^{-}}時刻』『接近x_{p^{-}}位置』,當 t_p』『到達x_p』,於 t_{p^{+}}之後』『離開x_{p^{+}}之地』,『』將此『等速運動』歸之於『粒子』的『運動慣性』;那個與『粒子偕行』相對『靜止』的『觀察者』亦將此『等速運動』歸之於『』的『運動慣性』,這就是『運動』之『慣性』的『第一義』。所謂『飛鳥之景未嘗動也,鏃矢之疾而有不行不止之時』是不了解『慣性之意』『跳躍』於『互為動靜』之間,事實上對『任一方』而言,那個『相對運動』都是『存在的』,根本不會有『瞬時速度』存不存在的問題,所以才名之為『慣性定律』︰ v = \frac{- \delta x}{- \delta t} = \frac{ \delta x}{ \delta t}  = \frac{+ \delta x}{+ \delta t},或者比喻的說︰在牛頓力學裡,沒有任何東西能夠阻擋『恆定恆速』之『時間之流』的啊!!

當『愛因斯坦』假設了『光速』對所有的『慣性觀察者』都是『一樣的』之後,引申出了『同時性的破壞』、『運動的鐘會變慢』、『運動的尺會縮短』…等等的『大哉論』,人們開始恍然大悟所謂的『相對』、所見的『運動』…之種種必須以『量測方法』為依據,面對『大自然』的『事實』並沒有『純粹思辯』所得之理『一定對』之『位置』的吧!

─── 摘自《【Sonic π】電聲學之電路學《四》之《 !!!! 》下