GoPiGo 小汽車︰格點圖像算術《投影幾何》【五‧線性代數】《導引六‧中》

既然已將『對射』性質賦予『透視』,P, l, l' 投影點 U,V 間之對應關係可用

 \left( \begin{array}{cc} v \\ 1 \end{array} \right)  = \  \left( \begin{array}{cc}  \frac{u}{(1- \frac{1}{k}) u + \frac{1}{k}} \\ 1 \end{array} \right)  \   {\overset {P}{\doublebarwedge }}  \   \left( \begin{array}{cc} 1 & 0 \\ 1 - \frac{1}{k} & \frac{1}{k}  \end{array} \right) \left( \begin{array}{cc} u \\ 1 \end{array} \right)

 \left( \begin{array}{cc} u \\ 1 \end{array} \right) = \  \left( \begin{array}{cc}  \frac{v}{(1- k) v + k} \\ 1 \end{array} \right)  \   {\overset {P}{\doublebarwedge }}  \   \left( \begin{array}{cc} 1 & 0 \\ 1 - k & k  \end{array} \right) \left( \begin{array}{cc} v \\ 1 \end{array} \right)

『齊次座標』表達也。

 

從表達式可知我們仍舊取 A,B 為『定點』︰

A \  {\overset {P}{\doublebarwedge }}  \  \left( \begin{array}{cc} 0 \\ 1 \end{array} \right)B \  {\overset {P}{\doublebarwedge }}  \  \left( \begin{array}{cc} 1 \\ 1 \end{array} \right)

簡單計算可得︰

A^{'} \  {\overset {P}{\doublebarwedge }}  \  \left( \begin{array}{cc} 0 \\ 1 \end{array} \right)B{'} \  {\overset {P}{\doublebarwedge }}  \  \left( \begin{array}{cc} 1 \\ 1 \end{array} \right)

而且還是用『本地座標系』︰

\overline{AB} 是線 l 上的『單位長度』, u =_{df} \frac{\overline{CA}}{\overline{AB}} 。對應之

\overline{A^{'}B{'}} 是線 l^{'} 上的『單位長度』,v =_{df} \frac{\overline{C^{'}A^{'}}}{\overline{A^{'}B^{'}}}

k 為此一『透視』下之『常數』︰

\frac{1}{k} =_{df} \frac{\frac{\overline{CA}}{\overline{CB}}}{\frac{\overline{C^{'}A^{'}}}{\overline{C^{'}B{'}}} } = \frac{\frac{\overline{PA}}{\overline{PB}}}{\frac{\overline{PA^{'}}}{\overline{PB^{'}}}}

且先看看這個『矩陣形制』滿足『透視』之『對合』嗎?假設線 l^{'} 趨近於 l 將『重合』,那麼那個『矩陣形制』會是 I_2單位矩陣』乎??

當此時刻 k 必然趨近於 1 哩!焉能不是 \left( \begin{array}{cc} 1 & 0 \\ 0 & 1}  \end{array} \right) 耶!!

但思 k=1 之條件不必是『重合』矣,難到不能是『平行』 l \parallel l^{'} 嘛?!

 

古來『平行』費疑猜!?實因『眼見為憑』有此『遠近之事』吧★

說道精誠所至、夢裡顯現,考之科學史有之。若問夢『銜尾蛇』者如何解?聽聞知名的心理學家『榮格』認為『銜尾蛇』其實是反映了人類的『心理原型』,果然『真積力』也!但讀《平面國數點》講『點頭派』之興起,源自一夢 ── 平行線交於『無窮』 \infty ── ,故以證明此義為『入門題』◎

也曾苦思其義,一日夢夢之際 ,耳邊響起嗚哩哇啦聲響,正覺擾人清夢之時,咦!?這不是老子

道德經‧第二十五章

有物混成,先天地生。寂兮寥兮,獨立不改,周行而不殆,可以為天下母。吾不知其名,字之曰道,強為之名曰。大曰,逝曰 ,遠曰。故道大,天大,地大,王亦大。域中有四大,而王居其一焉。人法地,地法天,天法道,道法自然。

嗎??恍兮惚兮惟『大、逝、遠、反』四字聽得分明!!猛想之下無蹤無影矣★

方將悵惘到底什麼『驢題』之刻︰

驢橋定理

驢橋定理拉丁語Pons asinorum),也稱為等腰三角形定理,是在歐幾里得幾何中的一個數學定理,是指等腰三角形二腰對應的二底角相等。等腰三角形定理也是歐幾里得幾何原本第一卷命題五的內容。

有關其名稱驢橋定理的由來有二種:一種是幾何原本中的示意圖即為一座橋,另外一種比較廣為大家接受,是指這是幾何原本中第一個對於讀者智力的測試,並且做為往後續更困難命題的橋樑[1]幾何學是列在中世紀四術之中,驢橋定理是在幾何原本的前面出現的較困難命題,是數學能力的一個門檻,也稱之為「笨蛋的難關」[2],無法理解此一命題的人可能也無法處理後面更難的命題。

無論其名稱的由來為何,驢橋定理一詞也變成是一種隱喻,是指對能力或了解程度的關鍵測試,可以將了解及不了解的人區分開來[3]

Pons asinorum

In geometry, the statement that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (Latin pronunciation: [ˈpons asiˈnoːrʊm]; English /ˈpɒnz ˌæsˈnɔərəm/ PONZ-ass-i-NOR-(r)əm), Latin for “bridge of donkeys”. This statement is Proposition 5 of Book 1 in Euclid‘s Elements, and is also known as the isosceles triangle theorem. Its converse is also true: if two angles of a triangle are equal, then the sides opposite them are also equal.

The name of this statement is also used metaphorically for a problem or challenge which will separate the sure of mind from the simple, the fleet thinker from the slow, the determined from the dallier; to represent a critical test of ability or understanding.[1]

byrne_preface-15

Byrne版幾何原本中,驢橋定理的內容,有列出部份歐幾里得的證明

假如兩個三角形全等之 第一原理為 SAS ── 夾角相等、夾角之兩邊亦皆對等 ── ,那麼作等長之延伸線段,迭代使用 SAS 證明,的確需要一番思慮。若是 SSS ── 三邊長都對應相等 ── 當第一原理,或許只需在等腰三角形之底取中點,就可藉 SSS 得出兩底角相等。據知幾何原本裡根本沒有 SSS 全等,這又為什麼呢?難到是因為它不夠直覺嗎?還是以一邊為底,兩端點各依所餘兩邊作圓,此二圓將相交於兩點,那要如何判定所形成的這兩個三角形全等的 呢??也許 SSS 之證明可以藉著在頂點處作條平行於底邊的平行線︰

─── 摘自《GoPiGo 小汽車︰格點圖像算術《投影幾何》【四‧平面國】《己》

 

P 點平行 \parallel l 之線,將交 l 於無窮遠 \infty 處,但交 l^{'}

\lim \limits_{u \to \pm \infty} \  \frac{u}{(1- \frac{1}{k}) u + \frac{1}{k}} =\frac{1}{1 - \frac{1}{k}} ,反之依然

P 點平行 \parallel l^{'} 之線,將交 l^{'} 於無窮遠 \infty 處,但交 l

\lim \limits_{v \to \pm \infty} \  \frac{v}{(1- k) v + k} =\frac{1}{1 - k}

招手『無限』 \infty 說何事?『平行』本性自帶來!

(1- k) v + k =0 \Rightarrow v = \frac{1}{1-\frac{1}{k}}

(1- \frac{1}{k}) u + \frac{1}{k} \Rightarrow u = \frac{1}{1-k}

終究根源自家栽

z \mapsto \frac{z}{z-1}

 Point at infinity

In geometry, a point at infinity or ideal point is an idealized limiting point at the “end” of each line.

In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we “forget” which points were added. This holds for a geometry over any field, and more generally over any division ring.[1]

In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, CP1, also called the Riemann sphere (when complex numbers are mapped to each point).

In the case of a hyperbolic space, each line has two distinct ideal points. Here, the set of ideal points takes the form of a quadric.

The real line with the point at infinity; it is called the real projective line.