GoPiGo 小汽車︰格點圖像算術《投影幾何》【五‧線性代數】《導引七‧變換組合 III 》

承上篇,在此『單點透視』

※ 此處 x,y,z 都是本地座標系,皆如是賦值︰

\frac{\overline{C^{''}A^{''}}}{\overline{C^{''}B^{''}}} = \frac{\overline{C^{''}A^{''}}}{\overline{C^{''}A{''}} - \overline{A^{''}B^{''}}} = \frac{z}{z -1}, \ z =_{df} \frac{\overline{C^{''}A{''}}}{\overline{A{''}B{''}}}

之特定安排下,任意『變換矩陣』

 \left( \begin{array}{cc} y \\ 1 \end{array} \right)  \  {\overset {P}{\doublebarwedge }}  \  \left( \begin{array}{cc} 1 & 0 \\ 1 - \frac{1}{k} & \frac{1}{k}  \end{array} \right) \left( \begin{array}{cc} x \\ 1 \end{array} \right)

 \left( \begin{array}{cc} x \\ 1 \end{array} \right)  \  {\overset {P}{\doublebarwedge }}  \  { \left( \begin{array}{cc} 1 & 0 \\ 1 - \frac{1}{k} & \frac{1}{k}  \end{array} \right)}^{-1} \left( \begin{array}{cc} y \\ 1 \end{array} \right)

,都是『下三角』形式

\left( \begin{array}{cc} A & 0 \\ C & D \end{array} \right)

故而皆是『可交換矩陣』也。

Commuting matrices

In linear algebra, two matrices  A and  B are said to commute if  AB=BA and equivalently, their commutator  [A,B]= AB-BA is zero. A set of matrices  A_{1},\ldots ,A_{k} is said to commute if they commute pairwise, meaning that every pair of matrices in the set commute with each other.

 

但是我們又怎麼知道這不是來自『本地座標系』的『單位長度』之不同呢??且把『   』尺寸引入,建立

度量空間

數學中,度量空間是個具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量

度量空間中最符合人們對於現實直觀理解的為三維歐幾里得空間。事實上,「度量」的概念即是歐幾里得距離四個周知的性質之推廣。歐幾里得度量定義了兩點間之距離為連接這兩點的直線之長度。此外,亦存在其他的度量空間,如橢圓幾何雙曲幾何,而在球體上以角度量測之距離亦為一度量。特殊相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。

度量空間還能導出開集閉集之類的拓撲性質,這導致了對更抽象的拓撲空間之研究。

 

吧!!假設

x \overline{AB} = x \cdot a \ddagger = x^{'} \ddagger

y \overline{A^{'}B{'}} = y \cdot b \ddagger = y^{'} \ddagger

且用矩陣代數計算看看哩︰

pi@raspberrypi:~ ipython3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)  Type "copyright", "credits" or "license" for more information.  IPython 2.3.0 -- An enhanced Interactive Python. ?         -> Introduction and overview of IPython's features. %quickref -> Quick reference. help      -> Python's own help system. object?   -> Details about 'object', use 'object??' for extra details.  In [1]: from sympy import *  In [2]: init_printing()  In [3]: k, a, b = symbols('k, a, b')  In [4]: 變換 = Matrix(([1,0],[1 - 1/k , 1/k]))  In [5]: 變換 Out[5]:  ⎡  1    0⎤ ⎢        ⎥ ⎢    1  1⎥ ⎢1 - ─  ─⎥ ⎣    k  k⎦  In [6]: 縮小 = Matrix(([1/a,0],[0, 1]))  In [7]: 縮小 Out[7]:  ⎡1   ⎤ ⎢─  0⎥ ⎢a   ⎥ ⎢    ⎥ ⎣0  1⎦  In [8]: 放大 = Matrix(([b,0],[0, 1]))  In [9]: 放大 Out[9]:  ⎡b  0⎤ ⎢    ⎥ ⎣0  1⎦  In [10]: 放大 * 變換 * 縮小 Out[10]:  ⎡  b     ⎤ ⎢  ─    0⎥ ⎢  a     ⎥ ⎢        ⎥ ⎢    1   ⎥ ⎢1 - ─   ⎥ ⎢    k  1⎥ ⎢─────  ─⎥ ⎣  a    k⎦  In [11]:  </pre>    <span style="color: #666699;">一併瞧瞧『透視性質』能因『座標選擇』而改變嗎??!!</span>  <span style="color: #808080;">且讓我們借著『透視性』之『抽象』定義︰</span> <h2><span id="Projective_geometry" class="mw-headline" style="color: #ff9900;">Projective geometry</span></h2> <span style="color: #ff9900;">In <a style="color: #ff9900;" title="Projective geometry" href="https://en.wikipedia.org/wiki/Projective_geometry">projective geometry</a> the points of a line are called a <a style="color: #ff9900;" title="Projective range" href="https://en.wikipedia.org/wiki/Projective_range">projective range</a>, and the set of lines in a plane on a point is called a <a style="color: #ff9900;" title="Pencil (mathematics)" href="https://en.wikipedia.org/wiki/Pencil_%28mathematics%29">pencil</a>.</span>  <span style="color: #ff9900;">Given two <a style="color: #ff9900;" title="Line (geometry)" href="https://en.wikipedia.org/wiki/Line_%28geometry%29">lines</a> <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" alt="\ell " width="11" height="24" /></span> and <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" alt="m" width="20" height="16" /></span> in a <a style="color: #ff9900;" title="Plane (geometry)" href="https://en.wikipedia.org/wiki/Plane_%28geometry%29">plane</a> and a point <i>P</i> of that plane on neither line, the <a style="color: #ff9900;" title="Bijection" href="https://en.wikipedia.org/wiki/Bijection">bijective mapping</a> between the points of the range of <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" alt="\ell " width="11" height="24" /></span> and the range of <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" alt="m" width="20" height="16" /></span> determined by the lines of the pencil on <i>P</i> is called a <b>perspectivity</b> (or more precisely, a <i>central perspectivity</i> with center <i>P</i>).<sup id="cite_ref-4" class="reference"><a style="color: #ff9900;" href="https://en.wikipedia.org/wiki/Perspectivity#cite_note-4">[4]</a></sup> A special symbol has been used to show that points <i>X</i> and <i>Y</i> are related by a perspectivity; <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02dcd17aa96e9dedae289353271c52ad00b93e0b" alt="X \doublebarwedge Y ." width="76" height="29" /></span> In this notation, to show that the center of perspectivity is <i>P</i>, write <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f914b58d0b8d0945da4ee6176618146deaf6143b" alt="X \ \overset {P}{\doublebarwedge} \ Y." width="75" height="48" /></span> Using the language of functions, a central perspectivity with center <i>P</i> is a function <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e04d1a74b6fa3b728499e363eb7ac0b25c08393" alt="f_P \colon [\ell] \mapsto [m]" width="135" height="30" /></span> (where the square brackets indicate the projective range of the line) defined by <span class="mwe-math-element"> <img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0deaaf8486e5099fa5283819d9cef1eb1efb6d47" alt="f_P (X) = Y \text{ whenever } P \in XY" width="309" height="29" /></span>.<sup id="cite_ref-5" class="reference"><a style="color: #ff9900;" href="https://en.wikipedia.org/wiki/Perspectivity#cite_note-5">[5]</a></sup> This map is an <a style="color: #ff9900;" title="Involution (mathematics)" href="https://en.wikipedia.org/wiki/Involution_%28mathematics%29">involution</a>, that is, <span class="mwe-math-element"><img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b1a2bb9dee33511a3eea59395c7d55942a4275b" alt="f_P (f_P (X)) = X \text{ for all }X \in [\ell]" width="307" height="29" /></span>.</span>  <span style="color: #ff9900;">The existence of a perspectivity means that corresponding points are in <a style="color: #ff9900;" title="Perspective (geometry)" href="https://en.wikipedia.org/wiki/Perspective_%28geometry%29">perspective</a>. The <a style="color: #ff9900;" title="Duality (projective geometry)" href="https://en.wikipedia.org/wiki/Duality_%28projective_geometry%29">dual</a> concept, <i>axial perspectivity</i>, is the correspondence between the lines of two pencils determined by a projective range.</span>  <span style="color: #808080;"> ,嘗試『賦值』吧。</span>  <img class="alignnone size-full wp-image-73795" src="http://www.freesandal.org/wp-content/uploads/投影線座標.png" alt="" width="800" height="600" />  <span style="color: #808080;">所 謂某一『透視』,在給出『兩相異線』l, l^{'}以及不在這兩線上的『一點』P就已確定。因為不論l線上,任一點X所形成之PX線,將交l^{'}線於唯一一點 ──  且稱X^{'}  ── 也。反之依然l^{'}線上任一點Y^{'}所形成之PY線,亦將交l線於唯一一點Y也。</span>  <span style="color: #808080;">由於相異兩點決定一條線,</span>  <span class="mwe-math-element" style="color: #808080;"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y">f_{P} \colon : [ \overline{AC} ]  \mapsto [ \overline{A^{'} C^{'}}]</span></span>  <span style="color: #808080;">依理明定了l與l^{'}『所有點』之間的『對射關係』。</span>  <span style="color: #808080;">已從『幾何推理』知道,若取A, B為『定點』,則 </span>  <span style="color: #808080;">\frac{\overline{CA}}{\overline{CB}} = \frac{\overline{PA}}{\overline{PB}}  \cdot \frac{\sin (\angle{APC})}{\sin(\angle{BPC})}。</span>  <span style="color: #808080;">自然A^{'}, B^{'}也為『定點』,且</span>  <span style="color: #808080;">\frac{\overline{C^{'}A^{'}}}{\overline{C^{'}B{'}}} = \frac{\overline{PA^{'}}}{\overline{PB^{'}}}  \cdot \frac{\sin (\angle{APC})}{\sin(\angle{BPC})}矣。</span>  <span style="color: #808080;">因此『賦值』後之『數值關係』當滿足</span>  <span style="color: #808080;">\frac{\frac{\overline{CA}}{\overline{CB}}}{\frac{\overline{C^{'}A^{'}}}{\overline{C^{'}B{'}}} } = \frac{\frac{\overline{PA}}{\overline{PB}}}{\frac{\overline{PA^{'}}}{\overline{PB^{'}}}}吧!</span>  <span style="color: #808080;">然而\frac{\overline{CA}}{\overline{CB}}至少可有兩種選項</span>  <span style="color: #808080;">‧\frac{\overline{CA}}{\overline{CB}} = \frac{\overline{CA}}{\overline{CA} - \overline{AB}} = \frac{x}{x -1}, \ x =_{df} \frac{\overline{CA}}{\overline{AB}} </span>  <span style="color: #808080;">‧\frac{\overline{CA}}{\overline{CB}} = \frac{\overline{CB} + \overline{BA}}{\overline{CB}} = \frac{y+1}{y}, \ y =_{df} \frac{\overline{CB}}{\overline{BA}} </span>  <span style="color: #808080;">該如何選擇呢?★☆</span>  <span style="color: #666699;"> <span style="color: #808000;">然相異之線無窮,觀者亦無限也,</span></span>  <img class="alignnone size-full wp-image-73837" src="http://www.freesandal.org/wp-content/uploads/投影線觀者.png" alt="" width="800" height="600" />  <span style="color: #808000;">如何能夠『像之像』f_P (f_P (X)) = X不變耶??</span>  <span style="color: #808000;">此所以說,因</span>  <span style="color: #808000;">\frac{x}{x-1} \Longrightarrow  \frac{\frac{x}{x-1}}{\frac{x}{x-1} - 1} = \frac{x}{x-1} ,故優於選</span>  <span style="color: #808000;">\frac{y+1}{y} \Longrightarrow  \frac{\frac{y+1}{y} +1}{\frac{y+1}{y}}  = \frac{2 y +1}{y+1}</span>  <span style="color: #808000;">的嘛!</span>  ─── 摘自《<a href="http://www.freesandal.org/?p=73791">GoPiGo 小汽車︰格點圖像算術《投影幾何》【五‧線性代數】《導引三》</a>》    <pre class="lang:default decode:true ">In [11]: A為原點之透視 = 放大 * 變換 * 縮小  In [12]: 以B為原點左移 = Matrix(([1,a],[0, 1]))  In [13]: 以B為原點左移 Out[13]:  ⎡1  a⎤ ⎢    ⎥ ⎣0  1⎦  In [14]: 以B為原點右移 = Matrix(([1,-b],[0, 1]))  In [15]: 以B為原點右移 Out[15]:  ⎡1  -b⎤ ⎢     ⎥ ⎣0  1 ⎦  In [16]: 以B為原點右移 * A為原點之透視 * 以B為原點左移 Out[16]:  ⎡    ⎛    1⎞        ⎛    ⎛    1⎞    ⎞    ⎤ ⎢  b⋅⎜1 - ─⎟        ⎜  b⋅⎜1 - ─⎟    ⎟    ⎥ ⎢    ⎝    k⎠   b    ⎜    ⎝    k⎠   b⎟   b⎥ ⎢- ───────── + ─  a⋅⎜- ───────── + ─⎟ - ─⎥ ⎢      a       a    ⎝      a       a⎠   k⎥ ⎢                                        ⎥ ⎢         1                              ⎥ ⎢     1 - ─                              ⎥ ⎢         k                              ⎥ ⎢     ─────                  1           ⎥ ⎣       a                                ⎦  In [17]: m = 以B為原點右移 * A為原點之透視 * 以B為原點左移  In [18]: m[0,0].simplify() Out[18]:   b  ─── a⋅k  In [19]: m[0,1].simplify() Out[19]: 0  In [20]: Matrix(([1,-1],[0,1])) * 變換 * Matrix(([1,1],[0,1])) Out[20]:  ⎡  1     ⎤ ⎢  ─    0⎥ ⎢  k     ⎥ ⎢        ⎥ ⎢    1   ⎥ ⎢1 - ─  1⎥ ⎣    k   ⎦  In [21]: M = Matrix(([1,-1],[0,1])) * 變換 * Matrix(([1,1],[0,1]))  In [22]: 放大 * M * 縮小 Out[22]:  ⎡  b     ⎤ ⎢ ───   0⎥ ⎢ a⋅k    ⎥ ⎢        ⎥ ⎢    1   ⎥ ⎢1 - ─   ⎥ ⎢    k   ⎥ ⎢─────  1⎥ ⎣  a     ⎦  In [23]:  </pre>    <span style="color: #666699;">,如是或可領會『變換步驟選擇』常生疑惑矣!!??</span>  <div class="wc-shortcodes-row wc-shortcodes-item wc-shortcodes-clearfix"><div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-one-third wc-shortcodes-column-first ">  <a href="http://www.freesandal.org/wp-content/uploads/濮陽西水坡蚌殼龍虎圖.jpg"><img class="alignnone size-full wp-image-9257" src="http://www.freesandal.org/wp-content/uploads/濮陽西水坡蚌殼龍虎圖.jpg" alt="濮陽西水坡蚌殼龍虎圖" width="362" height="280" /></a>  <a href="http://www.freesandal.org/wp-content/uploads/古人用蚌殼擺塑出了一幅天文星圖,其年代约為距今6500年.jpg"><img class="alignnone size-full wp-image-9255" src="http://www.freesandal.org/wp-content/uploads/古人用蚌殼擺塑出了一幅天文星圖,其年代约為距今6500年.jpg" alt="古人用蚌殼擺塑出了一幅天文星圖,其年代约為距今6500年" width="275" height="300" /></a>  <a href="http://www.freesandal.org/wp-content/uploads/凌家灘玉版.jpg"><img class="alignnone size-full wp-image-9251" src="http://www.freesandal.org/wp-content/uploads/凌家灘玉版.jpg" alt="凌家灘玉版" width="500" height="350" /></a>  <a href="http://www.freesandal.org/wp-content/uploads/良渚文化玉琮.jpg"><img class="alignnone size-full wp-image-9254" src="http://www.freesandal.org/wp-content/uploads/良渚文化玉琮.jpg" alt="良渚文化玉琮" width="243" height="207" /></a>  <a href="http://www.freesandal.org/wp-content/uploads/曾侯乙墓二十八宿漆箱五面圖象.jpg"><img class="alignnone size-full wp-image-9252" src="http://www.freesandal.org/wp-content/uploads/曾侯乙墓二十八宿漆箱五面圖象.jpg" alt="曾侯乙墓二十八宿漆箱五面圖象" width="496" height="386" /></a>  </div><div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-two-third wc-shortcodes-column-last ">  新石器時代仰韶文化中期,一個六千五百年前『<strong>濮陽西水坡</strong>』的墓穴,裡頭有一幅用『<strong>蚌殼</strong>』堆出的『<strong>龍虎圖</strong>』,刻意擺放的骸骨方位,到底在說著些什麼呢?中國的天文考古學家<strong>馮時</strong>先生認為︰ [vr_jsp width="100%" height="600px"] <span style="color: #808080;">文本引自<strong>鄭杭生</strong>與<strong>胡翼鵬</strong>先生所寫的論文《<strong>天道左旋,天圆地方:社會運行的溯源和依據</strong>》</span> <span style="color: #808080;">…</span> <span style="color: #808080;"> 對這組蚌殼龍虎圖案解說最深入的研究者是天文考古學家馮時。馮時認為,解釋這幅蚌塑龍虎圖案的<strong>關鍵</strong>是墓主人脚下、正北面的那個蚌塑梯形與人體脛骨组成的圖案:這是一個<strong>北斗的造型</strong>,蚌塑梯形表示斗魁,東側横置的兩根脛骨表示斗杓,所以這是一個構造十分完整的二象北斗天象圖。</span>  <span style="color: #808080;">蚌塑梯形與脛骨構成的北斗圖象,不儘是從形狀上認證,更主要的是從表示斗杓的兩根人體脛骨去尋找線索。古代計算時間的一種方法,是通過對人體影子長短變化的測量,所以最初的測影工具是模仿人體来設計的,這就是``<strong>表</strong>''。正是因為人體、表與時間具有這種特殊關係,所以古人把計量時間的表叫作``<strong>髀</strong>'', 而``髀''的本 義是人體的腿骨,從大量的史料文獻中可以找到證據,古代測量日影的工具``表''就是由人骨轉變而來,所以人骨在作為一個生物體的同時,在古代還曾充當過測定 日影的工具。濮陽西水坡45號墓中的北斗圖,把腿骨、表和時間這三個方面聯繫起来,體現了古人通過立表測影和觀測北斗來測定時間這兩種方法的結合。在這個 蚌殼梯形與脛骨的構圖中,脛骨的意義就是表示測定時間的工具。而北斗星也是古代中國人觀望天象,以此作為决定時間的標準星象。所以以脛骨作為這個構圖的長 柄,結合整個構圖,可以認定蚌殼梯形與脛骨構成的圖案就是<strong>北斗星</strong>。確定了北斗星,再聯繫整個圖象的布局和造型,那麼這副蚌殼擺塑的龍和虎就只能作為星象來解釋,這樣本來孤立的龍虎圖由于北斗的存在而被自然地聯繫成了整體,成為天上的星宿和星象,即<strong>四象</strong>中的<strong>蒼龍</strong>和<strong>白虎</strong>。而那個制式奇特的墓穴,其形狀實際呈現了最原始的<strong>蓋天圖式</strong>,下半部的方形是大地,上半部的圓形是天穹,實則蕴藏著最原始的``<strong>天圓地方</strong>''觀念。</span>  <span style="color: #808080;">這個只有蚌殼作為随葬物品的墓穴中, 竟然隱藏著<strong>``天''的秘密</strong>,陪葬墓主人的居然是整個天上的星斗。而那個北斗星的斗魁用貝殼,表明斗魁在天、在上;斗柄用人的腿骨,表明斗柄指地、在下。在 天、在上,為<strong>神</strong>、為<strong>鬼</strong>;在地、在下,為<strong>巫</strong>、為<strong>人</strong>。它實際反映著古人<strong>頂天立地</strong>的幻想,所體現的是蒼天與大地的配合或聯繫,是神、鬼、人的相互交往。 而且 6500 年前的古人對天象有如此精細的認識,說明他們的生活時時刻刻離不開對天象的觀察,不僅僅是<strong>觀象授時</strong>的實用層面上的應用,而如此虔誠的模擬,更說明他們的思想觀念和行為活動都受著``天''的無形制約。</span> <span style="color: #808080;"> …</span>  [/vr_jsp]  </div></div>  在《<a title="馬太福音 25:29;" href="http://www.freesandal.org/?p=1269">馬太福音 25:29;</a>》一文中,我們談到了『<strong>北極星</strong>』的不動與『<strong>太陽</strong>』之視運動,遠古之人就從觀察實踐中得出了『<strong>天圓地方</strong>』的『<strong>理念</strong>』,以及『<strong>天左旋,地右動</strong>』的『<strong>道理</strong>』。人們因著『<strong>觀測</strong>』天地事物,而能建立『<strong>理論</strong>』;追究『<strong>概念</strong>』的『<strong>緣由</strong>』以及『<strong>理則</strong>』之『<strong>依據</strong>』,所以創發『<strong>哲學</strong>』。因此在生活學習的道路上,其實是『<span style="color: #808080;"><strong>事無古今,理無中外</strong></span>』,彼此『<span style="color: #808080;"><strong>同異之間</strong></span>』的『<span style="color: #808080;"><strong>匯通處</strong></span>』往往就是『<span style="color: #808080;"><strong>基元</strong></span>』的『<span style="color: #808080;"><strong>觀念</strong></span>』;『<span style="color: #808080;"><strong>基元觀念</strong></span>』的不同『<span style="color: #808080;"><strong>詮釋</strong></span>』成為相異的『<span style="color: #808080;"><strong>學說</strong><strong>體系</strong></span>』。<span style="color: #ff99cc;">事實上『<strong>字串改寫系統</strong>』、『<strong>圖靈機</strong>』與『 <strong>λ 運算</strong>』,說著『<strong>□□</strong>』的不同『<strong>側寫</strong>』,彼此之間可以用『<strong>○○</strong>』來對應『<strong>轉譯</strong>』,人們或說『<strong>同</strong>』或講『<strong>異</strong>』的各種『<strong>詮釋</strong>』就祇在其人的了!!</span>  假使說給定了一個『<strong> λ表達式</strong>』 <span style="color: #808080;"><strong>(\lambda x. ((\lambda y. (x \ y)) \ \Box)  \ \bigcirc)</strong></span>,有人『<strong>第一步</strong>』這樣作『 <strong>\beta化約</strong>』︰  <span style="color: #808080;"><strong> ((\lambda y. ( \bigcirc \ y))  \ \Box )</strong></span>  ,也有人『<strong>第一步</strong>』這樣作『 <strong>\beta化約</strong>』︰  <span style="color: #808080;"><strong>(\lambda x. ( (x \ \Box )   \ \bigcirc)</strong></span>  ,這樣不同的『<strong>步驟選擇</strong>』是否會產生『<strong>不同結果</strong>』的呢?如果說再次繼續進行『 <strong>\beta化約</strong>』,兩者都會得到︰  <span style="color: #808080;"><strong>(\bigcirc \ \Box )</strong></span>  ,於是我們就可以歸結的說『 <strong>\beta$ 化約』不管是用著怎麽樣的『步驟次序』,都一定能夠得到『相同結果』的嗎??

─── 摘自《光的世界︰矩陣光學六壬