STEM 隨筆︰古典力學︰運動學【二.四B】

220px-Young_frege

250px-Begriffsschrift_Titel

Grundgesetze der Arithmetik

Frege2Russell1

Frege2Russell2

生於一八四八年十一月八日的弗里德里希‧路德維希‧戈特洛布弗雷格 Friedrich Ludwig Gottlob Frege 德國數學、邏輯和哲學大家,是近代數理邏輯分析哲學的主要奠基人享壽七十八年,其子皆不幸早逝,最終於五十八歲時領養了一子。時年二十二歲進耶拿大學修習,兩年後轉進哥廷根,二十六歲取得數學哲學博士學位,兩年後他回耶拿擔任講師,三十二歲時就任助理教授四十九歲成為教授。或因其父擅長數學亦任教於校,早年弗雷格研究數學和歐氏幾何學,深感亞里斯多德的邏輯不足以解釋幾何學,根本上很難處理有一些』與『所有的』這樣的一些『量詞』,於是開始深研邏輯一八七九年出版了一本名為『概念文字』── Begriffsschrift ──的書,書名副題是『模仿算術純思維之形式語言』,無疑是西方新邏輯學之開山之作。有人說他的形式邏輯系統之想法或得之於萊布尼茲對『運算推論機械』之渴望。其後又於一八八四年出版了《算術之基礎 ── 數之概念邏輯數學研究》,之後於一八九三年發行《算術之基本規律》卷一,這部書用著『集合論』演繹算術,或因卷二考慮自行發售之故,那時卻得英國伯特蘭·羅素回覆來的一封信,讀後大吃一驚,遂於一九零二年六月二十二日立即回覆,見之左圖。此事故因他先前寫給羅素的信上提到為著他的算術之基本規律所構造的一個『特殊的集合』,它由所有不包括自己為元素的一切集合所構成,或可用今天的符號說 S = {x|x ∉ x},於是羅素便問著那樣 S 屬不屬於 S 呢?只是此時卷二也已然付印,弗雷格於是也祇能在書中加個『後記』以示這事,慨嘆的回信給羅素說︰以為剛將完成之際卻發現那個大厦的基石已然動搖,這對於一個科學的工作者來說,沒有什麼能比這個更不幸的了!!

這就是史稱的『羅素悖論』,之後又叫做『理髮師悖論』,有著許多的版本,其一寫道︰

有一位理髮師宣稱,他為所有不為自己理髮的人理髮,請問他為不為自己理髮?

相傳弗雷格在耶拿大學時僅有一個學生 Rudolf Carnap ;他於有生之年從未得到廣泛的贊譽,即使羅素維根斯坦都曾大力讚揚他,還是因著第二次世界大戰之後,部分德國的哲學家和邏輯學家移居到了美國,以及嫡傳弟子卡爾納普的宣傳才在英語世界裡廣為人知,那些瞭解尊敬弗雷格之人才將他一生的主要著作翻譯成英文。!!

金星伴月

古來就有『晨星』『暮星』之;當日太白金星之為天神。又以朝見謂之『啟明』,夕位西而曰『太白』,主殺伐。此事東西皆然,祇可抱之以微笑 Smile 了!!

由於人們對於語言文字習以為常,以至於論述時其『所指』到底『存在』或是『不存在』反而不甚了了了。比方說吧

白色的念頭躺在茵茵的草地上

,這句話要作何解釋?如果用下面的議論可以嗎?

白色的念頭在我的腦海裡,我躺在茵茵的草地上之故

─── 《{X|X ∉ X} !!??

 

『剛體』

Rigid body

In physics, a rigid body is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces exerted on it. A rigid body is usually considered as a continuous distribution of mass.

In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light. In quantum mechanics a rigid body is usually thought of as a collection of point masses. For instance, in quantum mechanics molecules (consisting of the point masses: electrons and nuclei) are often seen as rigid bodies (see classification of molecules as rigid rotors).

 

之概念其實古就萌芽,歐拉的旋轉定理

歐拉旋轉定理

運動學裏,歐拉旋轉定理(Euler’s rotation theorem)表明,在三維空間裏,假設一個剛體在做一個位移的時候,剛體內部至少有一點固定不動,則此位移等價於一個繞著包含那固定點的固定軸的旋轉。這定理是以瑞士數學家萊昂哈德·歐拉命名。於1775年,歐拉使用簡單的幾何論述證明了這定理。

數學術語,在三維空間內,任何共原點的兩個座標系之間的關係,是一個繞著包含原點的固定軸的旋轉。這也意味著,兩個旋轉矩陣的乘積還是旋轉矩陣。一個不是單位矩陣旋轉矩陣必有一個實值本徵值,而這本徵值是 1 。 對應於這本徵值的本徵向量就是旋轉所環繞的固定軸[1]

 

使得一般固體物可用『平移』與『旋轉』向量 ── 最多六個自由度 ── 來描述其運動︰

自由度 (物理學)

力學裡,自由度指的是力學系統的獨立坐標的個數。力學系統由一組坐標來描述。比如一個質點的三維空間中的運動,在笛卡爾坐標系中,由 \displaystyle x,\ y,\ z\, 三個坐標來描述;或者在球坐標系中,由 \displaystyle r,\ \theta ,\ \phi \,  三個坐標描述。描述系統的坐標可以自由的選取,但獨立坐標的個數總是一定的,即系統的自由度。一般而言,N 個質點組成的力學系統由 3N 個坐標來描述。但力學系統中常常存在著各種約束,使得這 3N 個坐標並不都是獨立的。對於 N 個質點組成的力學系統,若存在 m完整約束,則系統的自由度減為

\displaystyle S=3N-m\,

比如,運動於平面的一個質點,其自由度為 2。又或是,在空間中的兩個質點,中間以線連接。所以其自由度
\displaystyle {\begin{aligned}S&=3\times 2-1\\&=3+2+0\end{aligned}}
其中的3表示2個質點的質心有3個位移方向,但由於有一條線約束,兩個質點繞質心的轉動自由度由3減為2,即不可做以線為軸的轉動,而又由於線是剛性不可伸縮的,故兩質點不可在線的方向上振動,即振動自由度為0。如果線是彈性的,則這個模型類似於兩原子構成的氣體分子模型,除了有3個位移自由度、2個轉動自由度外,還有1個振動自由度。

因此在研究氣體分子時一般將自由度分為平移自由度,轉動自由度及振動自由度三類。

 

為什麼『狹義相對論』宣稱不存在『完美剛體』呢?

絕非因為傳說愛因斯坦想像『馭光而行』 所發現的!

且不論以接近光速『平移』 ── 各點速度都一樣 ── 人類能否存活? ?一個高速『旋轉』的東西,視其大小,外緣恐或超過光速矣!!既依據『狹義相對論』講無物可以『超光速』而行,故而過程中蓋早已碎裂也!!◎ 該如何說『完美剛體』之概念呦??◎

如是假設『宇宙大霹靂』時就有『起始角動量』,那麼其後形成之『銀河規模』會不受限乎?!★

『做人』及『學問』都在道理『前後一貫』的啊!?☆

『什麼是旋轉』 ── 保長保角的變換 ── 之『定義』實已蘊涵『旋轉矩陣』 R 滿足

\displaystyle \mathbf {R} ^{\mathsf {T}}\mathbf {R} =\mathbf {R} \mathbf {R} ^{\mathsf {T}}=\mathbf {I} ,

『性質』矣。◎

※ 提示

Dot product

Definition

The dot product may be defined algebraically or geometrically. The geometric definition is based on the notions of angle and distance (magnitude of vectors). The equivalence of these two definitions relies on having a Cartesian coordinate system for Euclidean space.

In modern presentations of Euclidean geometry, the points of space are defined in terms of their Cartesian coordinates, and Euclidean space itself is commonly identified with the real coordinate space Rn. In such a presentation, the notions of length and angles are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle of two vectors of length one is defined as their dot product. So the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of Euclidean geometry.

Algebraic definition

The dot product of two vectors a = [a1, a2, …, an] and b = [b1, b2, …, bn] is defined as:[1]

\displaystyle \mathbf {a} \cdot \mathbf {b} =\sum _{i=1}^{n}a_{i}b_{i}=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}

where Σ denotes summation and n is the dimension of the vector space. For instance, in three-dimensional space, the dot product of vectors [1, 3, −5] and [4, −2, −1] is:
\displaystyle {\begin{aligned}\ [1,3,-5]\cdot [4,-2,-1]&=(1)(4)+(3)(-2)+(-5)(-1)\\&=4-6+5\\&=3\end{aligned}}
The dot product can also be written as:
\displaystyle \mathbf {a} \cdot \mathbf {b} =\mathbf {a} ^{T}\mathbf {b} .

Here,  \displaystyle \mathbf {a} ^{T} means the transpose of \displaystyle \mathbf {a}\mathbf {a} .

Using the above example, a 1 × 3 matrix (row vector) is multiplied by a 3 × 1 matrix (column vector) to get the result (1 × 1 matrix is obtained by matrix multiplication, which is a scalar):

\displaystyle {\begin{bmatrix}1&3&-5\end{bmatrix}}{\begin{bmatrix}4\\-2\\-1\end{bmatrix}}=3 .

Geometric definition

In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction that the arrow points. The magnitude of a vector a is denoted by \displaystyle \left\|\mathbf {a} \right\|. The dot product of two Euclidean vectors a and b is defined by[2][3]

\displaystyle \mathbf {a} \cdot \mathbf {b} =\|\mathbf {a} \|\ \|\mathbf {b} \|\cos(\theta ),

where θ is the angle between a and b.

In particular, if a and b are orthogonal, then the angle between them is 90° and

\displaystyle \mathbf {a} \cdot \mathbf {b} =0.

At the other extreme, if they are codirectional, then the angle between them is 0° and
\displaystyle \mathbf {a} \cdot \mathbf {b} =\left\|\mathbf {a} \right\|\,\left\|\mathbf {b} \right\|
This implies that the dot product of a vector a with itself is
\displaystyle \mathbf {a} \cdot \mathbf {a} =\left\|\mathbf {a} \right\|^{2},
which gives
\displaystyle \left\|\mathbf {a} \right\|={\sqrt {\mathbf {a} \cdot \mathbf {a} }},
the formula for the Euclidean length of the vector.

 

『旋轉』意義︰

\forall u , \forall v \  u^{T} v {=}_{df} {(R u)}^{T} (R v) =  u^{T} R^{T} R v = u^{T} (R^{T} R) v