STEM 隨筆︰鬼月談化學︰☱ 悅《銀河》‧美

有人問科學有『侷限性』嗎?當然是『』,科學並不處理『孤立事件』,或者說科學不研究只發生『一次』的事物。自然的『多多 』可以讓人多次多時多方重複實驗』,這樣形成的『自然科學』基石是『穩固的』。社會的『』是的眾多,社會學是研究人的□□』的學問。就像物理學研究『氣體性質』一樣,不得不借助『統計』手段,不能不假設理想氣體』,簡化那辦不到的複雜數學』計算,然後得到 P‧V=N‧R‧T 壓力‧體積 = 氣體量‧常數‧溫度的理想氣體方程式。既然稱之為『理想』,用之於『大氣』自然需要很多『修正』,如果再考慮氣體的『動力學性質,那麼『氣象預測』之所以『不準』,不是因為它不想』,而因為它還沒法!!這裡說的『一次』是『很少次』的意思,它的數量不足以用『統計推論』,做出什麼『有效』的『結論』。所以科學家不談論上帝創造世界』之事,即使想也無法研究』,也可以這樣講達爾文的『進化論研究『物種』的進化理論,至於這些物種是不是上帝與這個理論風馬牛『不相及』也。難道都沒有研究『』的嗎?當然有啊,比方有位哲學家談論『一條河』,他歸結到︰因世界萬物的流變,人無法踏入『同一』條河中『兩次如果科學家』,那他說的是『多中之一』,也就是從『統計觀察』下講的『這個』或『那個』『樣本』。舉個例吧,一位動物學家說著︰那一條哈舌搖尾巴狗,之所以『哈舌』是『散熱』降低體溫,之所以『搖尾巴』是『看到 』你來了!!

十九世紀義大利Vilfredo Pareto 是『精英理論』的創始人,他經過多年的觀察歸結出

20% 的人口擁有 80% 的財產

。後來舉世知名的品質管理大師 Joseph M. Juran 把帕累托的著名觀察,用統計方法論證改寫大名鼎鼎『80/20法則』,或又稱為帕累托法則。如果將這個法則用於分析讀書時間』一事,大概的結論百分之八十的讀書時間會是『無效用』的!!為什麼呢?也許想想一般人的心理活動理解』︰、先要『整理讀書心情 』,…春天不是讀書天,夏日炎炎正好眠,秋天一過冬天到,收拾書包好過年……怎麼又要『考』『考』『考』………;、讀了幾個字後『抱怨多厚』,…幹嘛講這麼多…古人真不嫌煩ㄚ寫那麼多是要怎樣……老師奇怪ㄟ考□□□的厚………;、似乎讀了起來卻有『鴻鵠將至』,…等下不是要演☆☆☆……簡訊來了ㄨㄣˋ範圍……聽到電玩聲音………;等等的等等。無怪乎這個法則的大名可以立『』了 ??

經濟學是一門『理性抉擇』的科學處理人因著『利弊 得失』之故要如何或會怎樣『作選擇』。經濟學之父亞當‧史密斯在他的大作《國富論》中講了『一隻看不見的手』,這隻神奇的手在完全競爭的『市場』中『攪拌』,終能將商人的『私利』轉化成社會的『公益』。不過民智大開之後,商人也許會『結社組會』的哄抬物價,或許能『獨有寡佔』讓消費者沒得選擇,此時也許無法攪拌,如此歸謬回到『前提』,『完全競爭』的市場或許根本不存在,就像『理想氣體』一樣。所謂天下『沒有白吃的午餐』,就『欲取先與』來講,無論是『廣告』、『贈品』、『試□』……,當然是希望『消費者』消費,難道說物豐民富又能有什麼不好嗎?只不過不是抽象的消費者』而已,那麼總得思考經濟學裡供需理論 中的市場︰是廠商有供應』的自由,還是消費者有選擇』的自由。更不要說每個人不只是這個的『消費者』,也是那個的『供應者提供某種『產品』或某類『服務』。為什麼兩個角色彼此彷彿『隔絕』?不能以此思彼,以彼思此呢??假如只用術語抽象論述著『活生生』的,難道不會像是說︰

嬰兒提供了微笑的服務,父母消費此微笑並對此服務十分滿意。

,一樣荒唐可笑嗎??因是之故,『八卦媒體』與『讀者選擇』的論辯,果真是大哉辨啊?何日方休??

─── 《觀測之『觀人文』

 

『星星』匯聚天上一閃一閃,隨著地球自轉,一起東昇西落而動,有如一彎『銀色河流』,豈不『美』乎?

The Milky Way’s Galactic Center in the night sky above the Paranal Observatory (the laser creates a guide-starfor the telescope).

Milky Way

The Milky Way is the galaxy[nb 1] that contains our Solar System. The descriptor “milky” is derived from the galaxy’s appearance from Earth: a band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλαξίας κύκλος (galaxías kýklos, “milky circle”).[19][20][21] From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe.[22] Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis,[23] observations by Edwin Hubble showed that the Milky Way is just one of many galaxies.

The Milky Way is a barred spiral galaxy with a diameter between 150,000 and 200,000 light-years (ly).[24][25][26] It is estimated to contain 100–400 billion stars.[27][28] There are probably at least 100 billion planets in the Milky Way.[29][30] The Solar System is located within the disk, 26,490 (± 100) light-years from the Galactic Center, on the inner edge of the Orion Arm, one of the spiral-shaped concentrations of gas and dust. The stars in the innermost 10,000 light-years form a bulge and one or more bars that radiate from the bulge. The galactic center is an intense radio source known as Sagittarius A*, likely a supermassive black hole of 4.100 (± 0.034) million solar masses.

Stars and gases at a wide range of distances from the Galactic Center orbit at approximately 220 kilometers per second. The constant rotation speed contradicts the laws of Keplerian dynamics and suggests that much of the mass of the Milky Way does not emit or absorb electromagnetic radiation. This mass has been termed “dark matter“.[31] The rotational period is about 240 million years at the position of the Sun.[16] The Milky Way as a whole is moving at a velocity of approximately 600 km per second with respect to extragalactic frames of reference. The oldest stars in the Milky Way are nearly as old as the Universe itself and thus probably formed shortly after the Dark Ages of the Big Bang.[32]

The Milky Way has several satellite galaxies and is part of the Local Group of galaxies, which form part of the Virgo Supercluster, which is itself a component of the Laniakea Supercluster.[33][34]

 

若說

孔方』積累成山分分秒秒,隨著經濟運行,只以漲跌出入為計,好似『銀子』川流之河,是否也『美』耶??

倘人能內『止』於『悅』外!

咸陽城,中國歷史上第一個王朝的古城秦帝國都城所在地。歷史上說,秦始皇焚書坑儒……,『易經』因為是『卜筮』之書,倖免於難;此卜筮之說也許並不可信。想想秦始皇為求長生不老諸般所作,難道對帝國的永祚就一無所為?古代【黃帝內經】一書上說︰天運當以日光明,這日光明就是『咸陽』之『』字,而『』字正是【易經下經】── 上經談天道,下經說人事 ──那 起於『咸恆』之首的『』字,這豈非不是為著『』嗎?── 永祚 ── 乎?或許這才真是,易經之所以能夠倖免於難的原因。勿論亦或不幸,秦始皇誤解了『天人感應』之說,因為『有心』所以不得其『』,又『無道』所以去其『』,以至於最後失其所望之『』!!

大學】的文本,開宗明義的說︰

大學之道明明德,在親民,在止於至善知止而後有,定而後能,靜而後能,安而後能,慮而後能 物有本末事有終始知所先後,則近道矣。

』卦,止外,高山與湖泊的對話,少女和少男的無猜 。自然的無心之感交流於天地情歸人世間!!

─── 處處靜觀皆自得 ───

─── 摘自《止於悅,自得之樂!

 

或可得無『心』之『美』感也!!

此所以『人擇原理』言先︰

在我們的地球上,有著各種不同的『能量形式』,廣泛的存在於『物理』、『化學』和『生命』現象之中。雖說知道『基本粒子』構成了『原子』,『原子』的結合成了『分子』,『巨大分子』的『複雜系統』形成了『生命現象』,然而該講對於這些不同種類的『交互作用』,人類所知還是很有限的。因此就有人議論著︰是否所有的的『生命現象』都可以『還原』成『理化現象』,因此可以用『物理』和『化學』的『術語』來『定義』與『解釋』的呢?在一九七三年澳洲天體物理學家布蘭登‧卡特 Brandon Carter 於紀念『哥白尼』誕辰五百周年的『宇宙理論觀測數據』會議上,站到了『哥白尼原理』的反面,他主張︰

正如哥白尼原理否認了人類在宇宙中的特殊地位,也如同哥白尼所主張的,地球並不是宇宙的中心,而且太陽也不過是一顆位於典型銀河系的典型恆星。雖然我們所處的位置不一定是『中心』,但是無法避免的,在某種程度上處於特殊的地位。───《大數重合與宇宙論中的人擇原理》論文。

人擇原理』Anthropic principle 有強、弱各種不同版本,贊成與批評的聲浪始終不斷。在此僅僅引用一九八六年約翰‧巴羅 John Barrow 和弗蘭克‧蒂普勒 Frank Tipler 所合著的《The Anthropic Cosmological Principle》書中寫的弱人擇原理︰

自然定律驚人地適合生命的存在。

物理學和宇宙學的所有量的觀測值,不是同等可能的;它們偏愛那些應該存在使碳基生命得以進化的地域以及宇宙應該足夠年老以便做到這點等等條件所限定的數值。

假使衡量『達爾文』的『生物進化』中的『物競天擇』原理,那麼從『微觀』理化系統的觀點上來說,是否已經發現一種理化作用『機制』,來說明『遺傳』現象的呢?與其說『DNA』與『RNA』解釋了許多『生命現象』,而它的『由來』只是因原子和分子長遠時間以來理化上的『隨機組合』就能夠產生的嗎??就像在『量子力學』的發展之初,物理學家也不知道『基本粒子』可以區分為『費米子』 ── 比方說電子、質子和中子 ── 與『玻色子』 ── 例如光子和胶子 ──,在那之前也當然就沒有『費米子』的『泡利不相容原理』Pauli Exclusion Principle。

這一切都是來自於『物理現象』的『實驗』與『觀察』,或許說『宇宙的探索』人類才剛踏出『一小步』,無怪乎一個『巧合』處處的宇宙,引發了人們『議論』紛紛 !!

─── 摘自《【SONIC Π】電聲學補充《一》

 

後講『化學演化』︰

/Chempy

Start with the Chempy tutorial https://github.com/jan-rybizki/Chempy…

Chempy

Flexible one-zone open-box chemical evolution modeling. Abundance fitting and stellar feedback calculation

Recent Developments

Oliver Philcox, during his 2017 summer internship at MPIA coded a NeuralNet add-on of Chempy (together with a very nice jupyter tutorial), which is orders of magnitudes faster than the original version and used it to score different yield-tables from the literature which lead to this publication. He also included many more CC-SN yieldsets.

Nathan Sandford, produced an interactive and very instructive Widget which you can run in your browser to see the effect that the star formation history has on abundance patterns.

 

之宇宙洪流呦!!??

由於『Chempy』疑似『chempy』,欲探其實者,安裝前記得更名的呀??!!

※ 參考︰

git clone https://github.com/jan-rybizki/Chempy
mv ChemPy/ ChemEpy/
cd ChemEpy/
mv ChemPy/ ChemEpy/
nano setup.py

pi@raspberrypi:~/ChemEpy more setup.py  from setuptools import setup, find_packages import os  result = [os.path.join(dp, f) for dp, dn, filenames in os.walk('ChemEpy/input')  for f in filenames if (os.path.isfile(os.path.join(dp, f)) & ('~' not in f))]  result1 = [os.path.join(dp, f) for dp, dn, filenames in os.walk('ChemEpy/mcmc')  for f in filenames if (os.path.isfile(os.path.join(dp,f)) & ('~' not in f))]  result += result1  for i,item in enumerate(result): 	result[i] = item[7:]  def readme():     with open('README.md') as f:         return f.read()  setup(name = "ChemEpy",     version = 0.2,     description = "chemical evolution modeling",     long_description = readme(),     author = "Jan Rybizki",     author_email = "",     url = "https://github.com/jan-rybizki/Chempy",     packages = find_packages(),     package_dir = {'ChemEpy' : 'ChemEpy'},     package_data = {'ChemEpy' : result},     classifiers=[       'Development Status :: 3 - Alpha',       'Intended Audience :: Science/Research',       'Operating System :: OS Independent',       'Programming Language :: Python',       'Topic :: Scientific/Engineering'       ],     zip_safe=False ) pi@raspberrypi:~/ChemEpy 

 

sudo pip3 install -e ChemEpy/