時間序列︰生成函數‧漸近展開︰白努利多項式之根《三》

就讓我們從白努利多項式的定義︰

B_n(x) = \sum \limits_{k=0}^{n} \binom {n}k B_k x^{n-k} ,計算 B_n (0) 開始︰B_n(0) = \sum \limits_{k=0}^{n} \binom {n}k B_k 0^{n-k} = B_n \cdot 0^0 = B_n

輔之以『對稱公式

B_n (1-x) = {(-1)}^n B_n (x), \ n \ge 0 ,那麼

B_{2k} (1) = B_{2k} (0) = B_{2k} , \ B_{2k+1} (1) = - B_{2k+1} (0) = - B_{2k+1}

因為白努利奇數B_1 = - \frac{1}{2} = B_1(0) 外,都是零 B_{2k+1} = 0 。且 B_0 (x) = 1 是個『常數函數』,故而 B_0 (1) = B_0 (0) = 1 ,所以

\therefore B_n (1) = B_n(0) , \ n \ge 0 , \ n \neq 1

假設 n \neq 1 ,如果我們用白努利多項式的定義直接計算 B_n (1)

= \sum \limits_{k=0}^{n} \binom {n}k B_k 1^{n-k} =  \sum \limits_{k=0}^{n} \binom {n}k B_k = B_n (0) = B_n

= \sum \limits_{k=0}^{n-1} \binom {n}k B_k + B_n =B_n

\therefore \sum \limits_{k=0}^{n-1} \binom {n}k B_k = 0 ,因此

\therefore \sum \limits_{k=0}^{n-2} \binom {n}k B_k  + \binom {n}{n-1} B_{n-1} = 0 。可以 m = n -1 將之改寫成『遞迴關係式

B_{m} = -\frac{1}{m+1} \sum \limits_{k=0}^{m-1} \binom {m+1}k B_k, \ m \ge 1 ,如是 n \neq 1 ,意味著 m \neq 0 ,妙哉! B_1 = -\frac{1}{1+1} B_0 = - \frac{1}{2} 也!!

不過用此『對稱公式』計算 B_n (\frac{1}{2}) ,對偶次白努利多項式無攸利吧! B_{2k} (\frac{1}{2}) = B_{2k} (\frac{1}{2}) 。但能知其為奇次白努利多項式之『根』哩! B_{2k+1} (\frac{1}{2}) = - B_{2k+1} (\frac{1}{2})

即使從白努利多項式的『微分公式

B_n^{'} (x) = n \cdot B_{n-1} (x) , \ n \ge 1

能知相鄰奇偶白努利多項式之『根』和『極值』間的『關係』,

加上已知的『推步公式

B_n (x+1) = B_n (x) +n x^{n-1}, \ n \ge 1

皆無助於求得 B_{2k} ( \frac{1}{2} ) 的『數值』正負大小或其與 B_n (0) 以及 B_n (1) 之『關係』乎?此所以『復製公式』

B_k (x) + B_k (x+\frac{1}{2}) = 2^{1-k} B_k (2x), \ k \ge 0

『乘法定理』發現之濫觴耶??

Multiplication theorem

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

Finite characteristic

The multiplication theorem takes two common forms. In the first case, a finite number of terms are added or multiplied to give the relation. In the second case, an infinite number of terms are added or multiplied. The finite form typically occurs only for the gamma and related functions, for which the identity follows from a p-adic relation over a finite field. For example, the multiplication theorem for the gamma function follows from the Chowla–Selberg formula, which follows from the theory of complex multiplication. The infinite sums are much more common, and follow from characteristic zero relations on the hypergeometric series.

The following tabulates the various appearances of the multiplication theorem for finite characteristic; the characteristic zero relations are given further down. In all cases, n and k are non-negative integers. For the special case of n = 2, the theorem is commonly referred to as the duplication formula.

Bernoulli polynomials

For the Bernoulli polynomials, the multiplication theorems were given by Joseph Ludwig Raabe in 1851:

k^{{1-m}}B_{m}(kx)=\sum _{{n=0}}^{{k-1}}B_{m}\left(x+{\frac {n}{k}}\right)

and for the Euler polynomials,

k^{{-m}}E_{m}(kx)=\sum _{{n=0}}^{{k-1}}(-1)^{n}E_{m}\left(x+{\frac {n}{k}}\right)\quad {\mbox{ for }}k=1,3,\dots

and

k^{{-m}}E_{m}(kx)={\frac {-2}{m+1}}\sum _{{n=0}}^{{k-1}}(-1)^{n}B_{{m+1}}\left(x+{\frac {n}{k}}\right)\quad {\mbox{ for }}k=2,4,\dots .

The Bernoulli polynomials may be obtained as a special case of the Hurwitz zeta function, and thus the identities follow from there.

※ 註︰恰是幾何級數等比數列關係

\sum \limits_{k=0}^{\infty} \left[ B_k (x) + B_k (x+\frac{1}{m}) + B_k (x+\frac{2}{m}) + \cdots + B_k (x+\frac{m-1}{m}) \right] \frac{t^k}{k!}

= \frac{t e^{xt}}{e^t - 1} + \frac{t e^{(x+\frac{1}{m})t}}{e^t - 1} + \frac{t e^{(x+\frac{2}{m})t}}{e^t - 1} + \cdots + \frac{t e^{(x+\frac{m-1}{m})t}}{e^t - 1}

= \frac{t e^{xt}}{e^t - 1} \left( 1 + e^{\frac{1}{m} t} + e^{\frac{2}{m} t}  + \cdots + e^{\frac{m-1}{m} t} \right)

= \frac{t e^{xt}}{e^t - 1} \left( \frac{e^t -1}{e^{\frac{1}{m} t} - 1}  \right)

= m \cdot \frac {( \frac{t}{m})  \cdot e^{(m \cdot x) \cdot  ( \frac{t}{m}) } }{e^{\frac{t}{m}} - 1}

= m \cdot \sum \limits_{k=0}^{\infty} B_k (m x) \frac{({\frac{t}{m})}^k}{k!}

= \sum \limits_{k=0}^{\infty} m^{1-k}B_k (m x) \frac{t^k}{k!}

故得

\therefore B_k + B_k (\frac{1}{2}) = 2^{1-k} B_k 矣。豈非

B_k (\frac{1}{2}) = \left( 2^{1-k} - 1 \right) B_k 夫☆

 

 

 

 

 

 

 

 

時間序列︰生成函數‧漸近展開︰白努利多項式之根《二》

如果人們已經知道『五次以上』之方程式沒有『多次方根』形式的一般解︰

PicassoGuernica

畢卡索名作《格爾尼卡》

250px-Niels_Henrik_Abel_(detail)

群論啟始者

250px-Evariste_galois

伽羅瓦理論創造者

220px-Roots_chart

220px-NegativeOne4Root.svg

\sqrt[4]{-1} 之根

220px-NegativeOne3Root.svg

\sqrt[3]{-1}之根

220px-The_graph_y_=_√x

\pm \sqrt{x}

220px-The_graph_y_=_3√x

\sqrt[3]{x}

概念的由來並非是無根之木突然結果,自有歷史的淵源,比較像鐵樹開花,基礎之因和境遇之緣的偶遇,彷彿一道閃光劃破天際 ,於是人們就知道了雷聲不遠的了。

在『群論』 group theory 的歷史上,兩位重要的興起者,或許因為不同的環境因素,都發生不幸的早夭事件。其一是挪威數學家尼爾斯‧亨利克‧阿貝爾 Niels Henrik Abel 生於一八零二年,一八二五年得到政府之資助,始得遊學柏林和巴黎。由於生前不得志,現實裡一直無法獲得教席而能專心的研究,最終在一八二九年,因肺結核在 挪威的弗魯蘭病世。就在死後兩天,家中收到了來自柏林的聘書。阿貝爾他以證明五次方程式『不可能』用『多次方根形式\sqrt[n]{x} 的一般解與對於『橢圓函數論』的研究而聞名於世。

法國著名的數學家埃瓦里斯特‧伽羅瓦 Évariste Galois 生於一八一一年,當他還是十多歲的青年之時,他就已經發現了 N 次多項式可以用『根式解』的『充份必要條件』,這解決了長期困擾數學界的問題。伽羅瓦是第一個使用『』 group 這一個術語的人。據聞他是一位激進的共和主義者,在路易‧菲利普復辟的時期被捕入獄。一八三二年時,伽羅瓦於出獄後,在一次幾乎自殺式的決鬥中喪了命,此事件的起因引起了多方各種的揣測??在今天他與阿貝爾並稱為『現代群論』的創始人 。

過去大數學家『歐拉』曾經著書立論,強調新的數學常常是起源於『觀察』與『實驗』。那麼伽羅瓦和阿貝爾他們又在觀察『什麼』的呢?假使思考 N 階『多項式』和 N 次『方程式』的『融會處

P(x) = \sum \limits_{i=0}^{i=n} c_i \cdot x^i = 0 \ =?= \prod \limits_{k=1}^{k=n} x - x_k

,此處 c_i 是『有理數』,x_k 是對應的『』。

那麼當時果真已經證明了 N 次『方程式』就有 N 個解的嗎?其實並非如此,然而『三次』與『四次』方程式求解的一般的『方法』大概已經知道了。這又和『五次』方程式能不能求解有什麼關係的呢?就樣我們就從 \sqrt{2} 是『有理數』嗎開始,也許可以窺見一斑。為什麼說 \sqrt{2}不可能』是『有理數』的呢?因為它不可能『表達』成『有理數』的『形式\frac{p}{q},一般約定的說此處 pq 是整數而且互質。如果依據『歐幾里得』的證法,假使講一個有理數 Q 的『因式分解』,沒有任何一個『質因子次方』大於二 ── 其內沒有平方數 ──,那麼這個 \sqrt{Q} 也就必然不會是『有理數』的了。這又是為什麼呢?因為假設 \sqrt{Q} = \frac{p}{q},就可以得到 p^2 = q^2 \cdot Q,然而因為 p, q互質』,所以 p = k \cdot Q,而且 k, q 也『互質』,這樣又可以得到 q^2 = k^2 \cdot Q,因此 q = m Q  就一定是當然的了,於是 pq 就有了共同『因子Q,這卻產生了『假設矛盾』,因是之故,『歸謬』的得出了 \sqrt{Q} 不是『有理數』。那麼當我們談及 P(x) = x^2 -2 = 0 = (x + \sqrt{2})(x - \sqrt{2}) 時,這裡所說的『多項式』與『方程式』是一樣的嗎?它們的內在聯繫又是什麼的呢?

── 摘自《【Sonic π】電路學之補充《四》無窮小算術‧中下下‧上

 

為何繼續探究『白努利多項式序列』 B_n (x) 之『根』呢?

乃今這個序列又稱之為『阿佩爾序列

Appell sequence

In mathematics, an Appell sequence, named after Paul Émile Appell, is any polynomial sequence {pn(x)}n = 0, 1, 2, … satisfying the identity

  {d \over dx}p_{n}(x)=np_{{n-1}}(x),

and in which p0(x) is a non-zero constant.

Among the most notable Appell sequences besides the trivial example { xn } are the Hermite polynomials, the Bernoulli polynomials, and the Euler polynomials. Every Appell sequence is a Sheffer sequence, but most Sheffer sequences are not Appell sequences.

Equivalent characterizations of Appell sequences

The following conditions on polynomial sequences can easily be seen to be equivalent:

  • For n = 1, 2, 3, …,
  {d \over dx}p_{n}(x)=np_{{n-1}}(x)
and p0(x) is a non-zero constant;
  • For some sequence {cn}n = 0, 1, 2, … of scalars with c0 ≠ 0,
p_{n}(x)=\sum _{{k=0}}^{n}{n \choose k}c_{k}x^{{n-k}};
  • For the same sequence of scalars,
  p_{n}(x)=\left(\sum _{{k=0}}^{\infty }{c_{k} \over k!}D^{k}\right)x^{n},
where
  D={d \over dx};
  • For n = 0, 1, 2, …,
p_{n}(x+y)=\sum _{{k=0}}^{n}{n \choose k}p_{k}(x)y^{{n-k}}.

 

應是開拓者有所得乎?『真理』面前人人『平等』,『思路』之內各各『不同』。某人之『解題方法』果真是其人之『神經網絡』的『獨特通道』耶??抑或是來自於外乎其身的大千世界之『經驗』 也!難到不可是『生而知之』嗎!!故而令人『好奇』了☆

此所以說起『讀書學習』乙事!喜歡依著次序、按部就班,好乎?不好耶 ??作者反省反思之後,以為『各適其性』矣☆

於是特說在前,提筆落處未必『重點』,輕描淡寫也許『關鍵』,只是隨著自己的『思路』感覺,希望讀者容易『理解』,信筆寫去而已。

因此直言曰︰那個『奇次』的白努利多項式,看來於 0\frac{1}{2}1 都是『其根』??!!

 

,首要就是『知道』如何計算 B_n (0), \ B_n (\frac{1}{2}) , \ B_n (1) 的呀!! ??

 

 

 

 

 

 

 

 

 

 

時間序列︰生成函數‧漸近展開︰白努利多項式之根《一》

想談談『數學理解』這件事,先想到 □□、○○ 『理解』是何意?那『理解』一詞的『意義』將要如何『定義』呢??中文維基百科詞條這麼講︰

理解

理解Understanding),又稱為領會了解懂得思維作用intellection),是指一種心理過程,與諸如人、情形或訊息之類的某種抽象的或有形對象相關,籍此一個人能夠對其加以思考,並且運用概念對該對象加以適當的處理。

理解乃是概念表達(又稱為概念化)的界線。理解某一事物,也就是已經對該事物實現了一定程度的概念表達或者說概念化。

有關理解的例子

  1. 一個人如果能夠做到對天氣加以預測並對天氣的一些特點加以解釋等等之類的話,那麼,就說這個人理解了天氣。
  2. 如果一位精神病醫生知道某位病人的焦慮及其原因,並且能夠針對如何應對焦慮給予有益的忠告,那麼,就說這位精神病醫生理解了該病人的焦慮。
  3. 就某條命令來說,如果某個人知道這究竟是誰下達的命令,下令者的期望究竟是什麼以及該項命令是否合法或者說正當等等,那麼,就說這個人理解了這條命令。
  4. 如果一個人能夠清醒地某條消息所傳達的信息內容,那麼,就說這個人理解了其中的修辭論據或某種語言
  5. 如果一個人能夠利用某一數學概念解決問題,尤其是那些此前未曾見過的問題,那麼,就說這個人理解了這個數學概念。

 

彷彿可意會的多,能言傳的少。就像解釋『如人飲水』,然後說其『自知冷暖』一般。那麼換個語境,由不同的人解釋︰

Understanding

Understanding is a psychological process related to an abstract or physical object, such as a person, situation, or message whereby one is able to think about it and use concepts to deal adequately with that object. Understanding is a relation between the knower and an object of understanding. Understanding implies abilities and dispositions with respect to an object of knowledge sufficient to support intelligent behavior.[1]

Understanding is often, though not always, related to learning concepts, and sometimes also the theory or theories associated with those concepts. However, a person may have a good ability to predict the behaviour of an object, animal or system — and therefore may, in some sense, understand it — without necessarily being familiar with the concepts or theories associated with that object, animal or system in their culture. They may, indeed, have developed their own distinct concepts and theories, which may be equivalent, better or worse than the recognised standard concepts and theories of their culture.

 

是否就能促進『理解』之『深、淺』乎︰

Shallow and deep

Someone who has a more sophisticated understanding, more predictively accurate understanding, and/or an understanding that allows them to make explanations that others commonly judge to be better, of something, is said to understand that thing “deeply”. Conversely, someone who has a more limited understanding of a thing is said to have a “shallow” understanding. However, the depth of understanding required to usefully participate in an occupation or activity may vary greatly.

For example, consider multiplication of integers. Starting from the most shallow level of understanding, we have (at least) the following possibilities:

  1. A small child may not understand what multiplication is, but may understand that it is a type of mathematics that they will learn when they are older at school. This is “understanding of context”; being able to put an as-yet not-understood concept into some kind of context. Even understanding that a concept is not part of one’s current knowledge is, in itself, a type of understanding (see the Dunning-Kruger effect), which is about people who do not have a good understanding of what they do not know.
  2. A slightly older child may understand that multiplication of two integers can be done, at least when the numbers are between 1 and 12, by looking up the two numbers in a times table. They may also be able to memorise and recall the relevant times table in order to answer a multiplication question such as “2 times 4 is what?”. This is a simple form of operational understanding; understanding a question well enough to be able to do the operations necessary to be able to find an answer.
  3. A yet older child may understand that multiplication of larger numbers can be done using a different method, such as long multiplication, or using a calculator. This is a more advanced form of operational understanding because it supports answering a wider range of questions of the same type.
  4. A teenager may understand that multiplication is repeated addition, but not understand the broader implications of this. For example, when their teacher refers to multiplying 6 by 3 as “adding 6 to itself 3 times”, they may understand that the teacher is talking about two entirely equivalent things. However, they might not understand how to apply this knowledge to implement multiplication as an algorithm on a computer using only addition and looping as basic constructs. This level of understanding is “understanding a definition” (or “understanding the definition” when a concept only has one definition).
  5. An teenager may also understand the mathematical idea of abstracting over individual whole numbers as variables, and how to efficiently (i.e. not via trial-and-error) solve algebraic equations involving multiplication by such variables, such as  {\displaystyle 2x=6}. This is “relational understanding”; understanding how multiplication relates to division.
  6. An undergraduate studying mathematics may come to learn that “the integers equipped with multiplication” is merely one example of a range of mathematical structures called monoids, and that theorems about monoids apply equally well to multiplication and other types of monoids.

For the purpose of operating a cash register at McDonald’s, a person does not need a very deep understanding of the multiplication involved in calculating the total price of two Big Macs. However, for the purpose of contributing to number theory research, a person would need to have a relatively deep understanding of multiplication — along with other relevant arithmetical concepts such as division and prime numbers.

 

『了解』耶?若是強要朔本追源,終究會遇到『天性』、『本能』這一類的『基元概念』哩!!所以作者假設『理解』 understand ,就是『理解中』 understanding ,就是『理解』加深『持續中』  understand-ing… ??宛如『領會』羅伯特‧里德『畫作』一樣︰

Robert Lewis Reid (1862-1939) at the Library of Congress

Robert Lewis Reid alternated between the easel & painting murals in public buildings. These at the Thomas Jefferson Building of the Library of Congress are worth note.

【智慧】

【理解】

【知識】

【哲學】

 

人人都有條『不言自明』之『思路』,只待自己發現走上矣!!

如斯者當能『領悟』他人『思路』之『根』夫☆

一個係數是整數的『多項式f(x) = \sum \limits_{i=0}^{n} c_i x^i 是一個在任何閉區間 [a, b] 裡『連續』而且於開區間 [a, b] 中『可微分』的『函數』,如果用『均值定理』來看所對應的 n 次『方程式f(x) = 0 的『\alpha ── 稱之為『代數數 ──,『劉維爾』證明了

如果『無理數\alpha 是一個 n 次『多項式』之根的『代數數』,那麼存在一個『實數A > 0,對於所有的『有理數\frac{p}{q}, \ p, q \in \mathbb{Z}, \ \wedge \ q > 0 都有

\left\vert \alpha - \frac{p}{q} \right\vert > \frac{A}{q^n}

,現今這叫做『劉維爾定理』。

既然 \alphaf(x) = 0 的一個『f(\alpha) = 0,假設除此之外它還有 \{ \alpha_1, \alpha_2, ..., \alpha_m \} 個與 \alpha 值不同的『』,考慮一個由 \alpha 構造的『閉區間[\alpha - 1, \alpha +1],由於 f^{\prime}(x) = \sum \limits_{i=1}^{n} c_i  \cdot i \cdot x^{i-1}  存在且連續,因此 | f^{\prime}(x) | 存在且連續,從『極值定理』可以知道 | f^{\prime}(x) | 在任何『閉區間』裡都有『極大值』,將 | f^{\prime}(x) |[\alpha - 1, \alpha +1] 中的『最大值』記作 M, | f^{\prime}(x) | \leq M,  \ x \in [\alpha - 1, \alpha +1]。讓我們選擇一個滿足 0 < A < \min \left(1, \frac{1}{M}, \left\vert \alpha - \alpha_1 \right\vert, \left\vert \alpha - \alpha_2 \right\vert, \ldots , \left\vert \alpha-\alpha_m \right\vert \right)A,『假使』有一個『有理數\frac{p}{q} 違背『劉維爾定理』,將會有 \left\vert \alpha - \frac{p}{q} \right\vert \le \frac{A}{q^n} \le A< \min\left(1, \frac{1}{M}, \left\vert \alpha - \alpha_1 \right\vert, \left\vert \alpha - \alpha_2 \right\vert, \ldots , \left\vert \alpha-\alpha_m \right\vert \right),此處 \frac{A}{q^n} \leq A 是因為『不等於零』的『正整數』至少是一。由於 A < 1A < | \alpha - \alpha_{i} |, i=1 \cdots m,因此 \frac{p}{q} \in [\alpha - 1, \alpha +1] 而且 \frac{p}{q} \notin \{ \alpha_1, \alpha_2, ..., \alpha_m \},也就是說 \frac{p}{q} 不是 f(x) 的『』,而且 f(x)\alpha 與  \frac{p}{q} 的『閉區間』內沒有『』,按照『均值定理』一定有一個 x_0 界於 \alpha 與  \frac{p}{q} 之間,使得 f(\alpha)-f(\frac{p}{q}) = (\alpha - \frac{p}{q}) \cdot f^{\prime}(x_0)。因為 f(\alpha) = 0f(\frac{p}{q}) \neq 0,所以可以將之改寫成 \left|\alpha -\frac{p}{q}\right |= \frac{\left | f(\alpha)- f(\tfrac{p}{q})\right |}{|f^{\prime}(x_0)|} = \left | \frac{f(\tfrac{p}{q})}{f^{\prime}(x_0)} \right |

由於 \left|f \left (\frac{p}{q} \right) \right| = \left| \sum \limits_{i=0}^n c_i p^i q^{-i} \right| = \frac{1}{q^n} \left| \sum \limits_{i=0}^n c_i p^i q^{n-i} \right | \ge \frac {1}{q^n},此處 \left| \sum \limits_{i=0}^n c_i p^i q^{n-i} \right | \ge 1 是因為 f(\frac{p}{q}) \neq 0 而『不等於零』的『正整數』至少是一。然而 \left| f^{\prime}(x_0) \right| \le M 以及 1/M > A,因此 \left | \alpha - \frac{p}{q} \right | = \left|\frac{f(\tfrac{p}{q})}{f'(x_0)}\right| \ge \frac{1}{Mq^n} > \frac{A}{q^n} \ge \left| \alpha - \frac{p}{q} \right|,產生了 \left | \alpha - \frac{p}{q} \right |  > \left | \alpha - \frac{p}{q} \right | 的『矛盾』,所以假使』有一個『有理數\frac{p}{q} 違背『劉維爾定理的『假設』不成立。

在此回顧一下『劉維爾數』的定義

如果一個實數 w 滿足,對任何正整數 n ,都存在著整數 p, q ,其中 q > 1 而且『定然』的會有 0 < \left| w - \frac{p}{q} \right| < \frac{1}{q^{n}},如此我們就將此數 w 叫做『劉維爾數』。

假使一個『劉維爾數』  w 是一個『代數數』,那麼一定會有 \exists n \in \mathbb Z,  \ A > 0 \ \forall p, q \ q > 0, \ \left( \left\vert w - \frac{p}{q} \right\vert > \frac{A}{q^{n}} \right)。但因為它也是『劉維爾數』,所以當取滿足 \frac{1}{2^r} \le A 的正整數 r,並使 m = r + n ,一定存在整數 a, b 其中 b > 1 使得

\left| w - \frac{a}{b} \right| < \frac{1}{b^m} = \frac{1}{b^{r+n}} = \frac{1}{b^rb^n} \le \frac{1}{2^r} \frac{1}{b^n} \le \frac{A}{b^n}

,此處 \frac{1}{b^r} \le \frac{1}{2^r} 是由於 b > 1,因此 b \geq 2。然而這卻與『劉維爾定理』產生矛盾。所以『劉維爾數』的確是『超越數』的啊!!

─── 摘自《【Sonic π】電路學之補充《四》無窮小算術‧下

 

 

 

 

 

 

 

 

 

 

時間序列︰生成函數‧漸近展開︰白努利多項式之根《引言》

明代仇英繪《玉洞仙源圖》,現藏北京故宮博物院

桃花源

桃花源,出自陶淵明詩《桃花源詩》。詩的序《桃花源記》記述一個世俗的漁人偶然進入與世隔絕之地的奇遇記。

桃花源記

本文由晉朝文人陶淵明作於永初二年(421年),文章描繪了一個沒有戰亂,沒有壓迫,自給自足,人人自得其樂的社會,是當時的黑暗社會的鮮明對照,是作者與世人所嚮往的一種理想社會,它體現了人們的追求與想往,也反映出人們對現實的不滿與反抗。

原文

太元中,武陵人,捕魚為業。緣溪行,忘路之遠近。忽逢桃花林,夾岸數百步,中無雜樹,芳草鮮美,落英繽紛。漁人甚異之。復前行,欲窮其林。

林盡水源,便得一山。山有小口,彷彿若有光。便舍船,從口入。初極狹,纔通人。復行數十步,豁然開朗。土地平曠,屋舍儼然,有良田、美池、桑、竹之屬。阡陌交通,雞犬相聞。其中往來種作,男女衣著,悉如外人;黃髮、垂髫,並怡然自樂。

見漁人,乃大驚,問所從來。具答之。便要還家,設酒殺雞作食。村中聞有此人,咸來問訊。自雲先世避時亂,率妻子邑人來此絕境,不復出焉,遂與外人間隔。問今是何世,乃不知有,無論、晉。此人一一為具言所聞,皆嘆惋。餘人各復延至其家,皆出酒食。停數日,辭去。此中人語云:「不足為外人道也。」

既出,得其船,便扶向路,處處誌之。及下,詣太守說如此。太守即遣人隨其往,尋向所志,遂迷不復得路。

南陽劉子驥,高尚士也,聞之,欣然規往。未果,尋病終。後遂無問津者。

桃花源之美容易想像,桃花成林芳草落英怎不迷人!為何向路誌之不復得路呢?原居世外者自言︰不足為外人道也。無緣自是不得見的吧 。若問知性有美乎?果有,卻乏人問津?恐非無緣,怕是自己不想見哩!所以數學家到底在想些什麼?你非他,常常搞不懂也!不過就算是人非魚,有人能想出『出遊而從容,是魚之樂也。』? ?那麼數學家所樂真無法得之嗎!!

作者偶因靈感,

『豆鵝狐人』之問題就是

狐狸、鵝、豆子問題
狐狸、鵝、豆子問題〔又稱狼、羊、菜問題〕是一則古老的智力遊戲題。

問題
有一個農民到集市買了一隻狐狸、一隻鵝和一袋豆子,回家時要渡過一條河。河中有一條船,但是只能裝一樣東西。而且,如果沒有人看管,狐狸會吃掉鵝,而鵝又很喜歡吃豆子。問:怎樣才能讓這些東西都安全過河?

解答

第一步、帶鵝過河;
第二步、空手回來;
第三步、帶狐狸〔或豆子〕過河;
第四步、帶鵝回來;
第五步、帶豆子〔或狐狸〕過河;
第六步、空手回來;
第七步、帶鵝過河。

在此『問』的『問題』是︰

如何將之用 pyDatalog 語言『改寫重述』,使得可以用『程式』來執行『推理』,得到『答案』的呢?

─── 摘自《勇闖新世界︰ 《 pyDatalog 》 導引《十》豆鵝狐人之問題篇

 

,嘗寫序列文字,故而得識『豆鵝狐人』其人,得聞其事︰

我聽到有聲音說︰這裡是『數學桃花源』。我見到︰定義、原理、定律鱗次櫛比之實物。那裡概念栩栩如生,色香味俱全。嚇的我一覺醒來……

。已經有前車之鑑,豈敢造次??!!但其後又聞『符號算術』

bernoulli

class sympy.functions.combinatorial.numbers.bernoulli

Bernoulli numbers / Bernoulli polynomials

The Bernoulli numbers are a sequence of rational numbers defined by B_0 = 1 and the recursive relation (n > 0):

      n
     ___
    \      / n + 1 \
0 =  )     |       | * B .
    /___   \   k   /    k
    k = 0

They are also commonly defined by their exponential generating function, which is x/(exp(x) – 1). For odd indices > 1, the Bernoulli numbers are zero.

The Bernoulli polynomials satisfy the analogous formula:

          n
         ___
        \      / n \         n-k
B (x) =  )     |   | * B  * x   .
 n      /___   \ k /    k
        k = 0

Bernoulli numbers and Bernoulli polynomials are related as B_n(0) = B_n.

We compute Bernoulli numbers using Ramanujan’s formula:

                         / n + 3 \
B   =  (A(n) - S(n))  /  |       |
 n                       \   n   /

where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6 when n = 4 (mod 6), and:

       [n/6]
        ___
       \      /  n + 3  \
S(n) =  )     |         | * B
       /___   \ n - 6*k /    n-6*k
       k = 1

This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition.

  • bernoulli(n) gives the nth Bernoulli number, B_n
  • bernoulli(n, x) gives the nth Bernoulli polynomial in x, B_n(x)

See also

bell, catalan, euler, fibonacci, harmonic, lucas

References

[R91] http://en.wikipedia.org/wiki/Bernoulli_number
[R92] http://en.wikipedia.org/wiki/Bernoulli_polynomial
[R93] http://mathworld.wolfram.com/BernoulliNumber.html
[R94] http://mathworld.wolfram.com/BernoulliPolynomial.html

 

。心想又能探看『白努利多項式根』之鄉,或可不擾其清靜,因此方敢無所忌憚大膽說之也☆★

pi@raspberrypi:~ $ ipython3
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 
Type "copyright", "credits" or "license" for more information.

IPython 2.3.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: from sympy import *

In [2]: from sympy.plotting import plot

In [3]: init_printing()

In [4]: x = symbols('x')

In [5]: bernoulli(5,x)
Out[5]: 
        4      3    
 5   5⋅x    5⋅x    x
x  - ──── + ──── - ─
      2      3     6

In [6]: plot(bernoulli(5,x), (x, -1,2), ylim = (-0.5, 0.5))
Out[6]: <sympy.plotting.plot.Plot at 0x74d0cad0>

In [7]: solve(bernoulli(5,x))
Out[7]: 
⎡           1   √21    √21   1⎤
⎢0, 1/2, 1, ─ + ───, - ─── + ─⎥
⎣           2    6      6    2⎦

In [8]: 

 

 

 

 

 

 

 

 

 

 

 

時間序列︰生成函數‧漸近展開︰白努利 □○《十後》

『提問』其實不容易,『破題』往往費思量。若說整體部份能自洽 ,或得止觀觀止會通處耶?

以《止觀》來《觀止》,自能了解『整體』與『部份』的『自洽性』。就像拼圖』、數獨』以及燈謎』一樣,所求總在『整體』和『部份』之『契合』裡。這樣容易明白,一九七二年英國獨立的科學家、環保主義者和未來學家詹姆斯‧洛夫洛克 James Lovelock 提出的『蓋亞假說』 Gaia hypothesis ︰

地球整個表面,包括所有生命,構成一個自我調節的整體,這就是我所說的『蓋亞』。

簡單地說,蓋亞假說是指在生命與環境的相互作用之下,能使得『地球』適合『生命持續』的生存與發展。

維基百科上講︰

該觀點於 1972 年首次提出,主流科學家主要以其不夠嚴密為由堅決拒絕接受。 1981 年,這一觀點首次得到支持。當時,洛夫洛克創造出計算機模擬的反射或吸收太陽輻射的白色或黑色雛菊世界。由於雛菊的數量隨著普遍的表面溫度變化而相對改變,因此雛菊群維持全球氣溫均衡。此後,更多生物多樣性的複合模型提高了該系統的穩定性

當可以知道人們對『可計算』與『能度量』的堅持,有時忘卻了『不可計算性』和『測不準』的『科學』。怕只是『一時』以及『長遠』『○□難免』之爭的吧!

□︰ 『求解問題』有樂趣?『止觀觀止』能休閒嗎??

○︰ 煩惱即菩提

樂休『求不得』!

閒趣『止不了』!!


雖已『破題』,恐有人問到『題解』,『題解』倒是不知,或許能給些『提示』︰

讀錯□書⊙錯讀□書

天下一指、萬物一馬︰二進制

怎樣解題

‧ …… N. A.

,『藥引』嘛!問者自答!!

─── 摘自《M♪o 之 TinyIoT ︰ 《破題》

 

自問自答常可契合關鍵,當能自我啟蒙乎!

試求白努利多項式在單位閉區間 (k+1) - k = 1 之積分

\int_{k}^{k+1} B_n (x) dx

倘知 B_n^{'} (x) = n \cdot B_{n-1} (x), \ n \ge 1 ,可用

= \frac{1}{n+1} \int_{k}^{k+1} \frac{ d \ B_{n+1} (x) }{dx} dx

= \frac{1}{n+1} \cdot B_{n+1} (x) \left.  \right|_{k}^{k+1}

若知 B_n (x+1) = B_n (x) + n \cdot x^{n-1} ,能得

=  \frac{1}{n+1} \left( B_{n+1} (k+1) - B_{n+1} (k) \right)

= \frac{1}{n+1} \left( (n+1) k^{n} \right)

= k^n

 

或將知白努利多項式之『積分定義』矣。

Representation by an integral operator

The Bernoulli polynomials are the unique polynomials determined by

  \int_x^{x+1} B_n(u)\,du = x^n.

The integral transform

  (Tf)(x) = \int_x^{x+1} f(u)\,du

on polynomials f, simply amounts to

</span

This can be used to produce the inversion formulae below.

 

如是者,豈不敢踏上征途的哩☆

The asymptotics for the number of real roots of the Bernoulli polynomials

A new short clear proof of the asymptotics for the number cn of real roots of the Bernoulli polynomials Bn(x), as well as for the maximal root yn:

y_n = \frac{n}{2 \pi e} + \frac{\ln (n)}{4 \pi e} + O(1) and c_n = \frac{2 n}{\pi e} + \frac{\ln (n)}{\pi e} + O(1)

Comments: 5 pages, 4 figures, rearranged figures
Subjects: Number Theory (math.NT)
MSC classes: 11B68; 11B83
Cite as: arXiv:math/0606361 [math.NT]
  (or arXiv:math/0606361v2 [math.NT] for this version)

Submission history

From: Alexander Efimov [view email]
[v1] Thu, 15 Jun 2006 14:24:45 GMT (5kb)
[v2] Fri, 16 Jun 2006 06:03:55 GMT (5kb)

The asymptotics for the number of real roots of the Bernoulli polynomials