STEM 隨筆︰古典力學︰轉子【五】《電路學》一

自然界中『能量』的『形式』有很多種,不同的『學說‧理論』的歷史的發展,產生了能量的多種『單位』︰

機械功】︰ \int \vec{F} \cdot \vec{ds} 是『牛頓‧米』,一『『牛頓‧米』就是一『焦耳』。

熱能』︰將一公克的水在一大氣壓 ── 101.325 kPa ── 下升高攝氏一度所需要的熱量,叫做一『卡路里』Calorie,簡稱作『』,縮寫成 cal。後來的科學家發現水在不同溫度下的比熱容量不同,所以又衍生了許多不同的定義。這就是焦耳所量測的『熱功當量』。一『』等於  4.186 『焦耳』。

電能』︰依據『焦耳定律I \cdot V \cdot t 是『安培‧伏特‧秒』,也就是說一『安培‧伏特‧秒』就是一『焦耳』。

所謂的『功率』 power 是指『能量』之『轉換』或者『使用』的『速率』,用單位時間的能量大小來表示。『功率』的『單位』是『瓦特』 W ,假使 \Delta W 是一物理系統在 \Delta t 時間內所做的功,那麼這段時間內的『平均功率P_{avg} 可以由下式給出

P_{avg} = \frac{\Delta W}{\Delta t}

。而『瞬時功率』就是當時間 \Delta t \rightarrow 0 時,『平均功率』的極限值

P = \lim \limits_{\Delta t\to 0} \frac{\Delta W}{\Delta t} = \frac{{\rm d}W}{{\rm d}t}

。也就是講一秒消耗一焦耳的能量就是一『瓦特』,一般所說的『一度電』是指『一千瓦小時』所使用的『電能』多寡,它等於 1000 \cdot 60 \cdot 60 J

從『瞬時功率』 的『定義』,可以推導出

機械瞬時功率】是 {P}(t) = \vec{F}(t) \cdot \vec{v}(t)

電力瞬時功率】是 P(t) = I(t) \cdot V(t)

Maxpowertheorem

350px-Maximum_Power_Transfer_Graph.svg

Source_and_load_circuit_Z

500px-Coaxial_transmission_line_wih_one_source_and_one_load.svg

200px-Jedlik_motor

220px-Faraday_disk_generator

220px-Wechselstromerzeuger

DynamoElectricMachinesEndViewPartlySection_USP284110

220px-3phase-rmf-noadd-60f-airopt

出生於波茨坦德國物理學家與工程師 Moritz von Jacobi, 一八三五年前往,愛沙尼塔爾圖大學 Tartu Ülikool 任職為教授。自一八三四年起,他就開始研究『磁性馬達』 magnetic motors。據聞一八四零年,於『Die Galvanoplastik』一書中,他提出了『最大功率傳輸理論』Maximum power transfer theorem︰
Maximum power is transferred when the internal resistance of the source equals the resistance of the load, when the external resistance can be varied, and the internal resistance is constant.

。傳聞這個今稱『雅可比定律』早先被『焦耳』誤解為
a system consisting of an electric motor driven by a battery could not be more than 50% efficient since, when the impedances were matched,  the power lost as heat in the battery would always be equal to the power delivered to the motor.

。一八三一年法拉第創造了『Homopolar generator』的『直流發電機』,現今稱之為『Faraday disc』,由於它的『設計構造』,祇能產生很小的『直流電壓』 DC voltage。自此『直流發電機』 dynamo 的『設計改善』就一直持續中。一八三二年,法國的儀器製造商 Hippolyte Pixii 應用『法拉第』的『電磁感應』定律,製造了最早的『交流發電機』alternating current electrical generator。是一種『有電』與『沒電』交替的『電流脈沖』發電機,因此輸出的『平均功率』也很小。一八六六年,適合於工業用的『現代發電機』,最早由英國工程師『瓦利』 C. F. Varley 於十二月二十四日,註冊了『專利』。隔年有兩位『獨立發展者』同時於一月十七日發表了他們的發現。其一是德國西門子公司』創始人恩斯特‧維爾納‧馮‧西門子 Ernst Werner von Siemens;另一是以『惠斯登電橋』 Wheatstone bridge 稱名於世的英國科學家查爾斯‧惠斯登 Sir Charles Wheatstone。

在有了『發電機』之後,『電功率』有效之『應用』就更顯得重要的了,『最大功率傳輸理論』的『誤解』也將逐漸揭開了『真相』,難道『雅可比』錯了嗎??

一八七八年,就在素有『科學家聖者』scientist-sage 稱號的德國物理學家與醫生赫爾曼‧馮‧亥姆霍茲 Hermann von Helmholtz 推薦下,愛迪生僱用了剛剛取得普林斯頓碩士學位』的『弗朗西斯‧羅賓‧阿普顿』 Francis Robbins Upton 為助手。由於阿普顿畢業之後曾經跟隨他作過一年的研究,亥姆霍茲深為肯定,又鑑於愛迪生是『自學成家』,所以可能需要有良好『理論技能』的人來協助,因此玉成了這件事情。其後阿普顿成為愛迪生的主要夥伴之一,兩人一起完成了許多發明與創造。其一就是有關『電力工廠』與『配電系統』的研究。一八八零年,愛迪生開始設計『照明系統』,那時的所接受的『智慧』就是使『電樞阻抗』等於『負載電阻』。現今已經不知是愛迪生還是阿普顿覺得這事不對勁。很快的他們了解了『最大功率傳輸』maximum power transfer 和『最大效率』是不同的兩件事,於是便將『發電機』的『電樞阻抗』下降,得到了 90% 的效率。當時美國科技出版業的『專家』嘲諷的說︰就在他事實上作出來的時候,我卻根本作不了。之後大家都知道了這真的是一個『事實』,終究愛迪生或阿普顿幾乎從未因此得到過任何的讚譽。

Maxpowertheorem

雅可比定律』是說當『電壓源V 的『內阻R_S 固定的時候,對於『可變動』的『負載電阻R_L 來講,假使 R_L = R_S 這時的『功率傳輸』是『最大值』。

這可以推導如下,依據歐姆定律

I = \frac{V}{R_\mathrm{S} + R_\mathrm{L}}

,因此

P_{L} = I^2 R_{L} = \left(\frac{V}{R_{S} + R_{L}}\right)^2 R_{L} = \frac{V^2}{R_{S}^2 / R_{L} + 2 R_{S} + R_{L}}

,所以當 \frac{d P_L}{d R_L} = 0 就是『功率傳輸』之『最大值』的條件,可以得到 R_L = \pm R_S,再由二階導數 \frac{d^2 P_L}{d {R_L}^2} = 0 的『正、負』號,來判斷『極小、大值』,就可歸結出了 R_L = R_S,這時 P_{max} = \frac{V^2}{4 R_L} =  \frac{V^2}{4 R_S}

焦耳』的『誤解』在於『錯讀』了『R_S 是常數』的『假設』!為什麼呢?假使我們換一個說法,如果 R_L 是『固定的』,那麼哪樣的 R_S 可以產生『功率傳輸』之『最大值』的呢?此時它的條件變成 \frac{d P_L}{d R_S} = 0,然而這個條件得到 R_S = - R_L 而且此時 P_L \rightarrow \infty,所以它並不是合理的『最大值』。進一步的分析,當 R_S \rightarrow \infty 時,P_L \rightarrow 0,於是當 R_S = 0 是合理範圍內的『功率傳輸』之『最大值』,此時 P_{max} = \frac{V^2}{R_L}。這就是當年愛迪生和阿普顿在說的事情啊!!

今天我們將『效率』  \eta 定義成『負載功率與電源輸出功率的比值』。可以表示成

\eta = \frac{R_{load}}{R_{load} + R_{source}} = \frac{1}{1 + R_{source} / R_{load}}

350px-Maximum_Power_Transfer_Graph.svg

R_{load} = R_{source} 時,『效率\eta = 0.5

R_{load} = \inftyR_{source} = 0 時,『效率\eta = 1.0

R_{load} = 0 時,『效率\eta = 0.0

 

─── 精讀與略讀都是重要的閱讀方法,

那何時該略讀的呢?何時又該精讀的呢?

大哉問?? ───

─── 《【SONIC Π】電路學之補充《二》

 

固然『學而不思則罔,思而不學則殆。』。

絕非『雜亂無章』之學,『顛三倒四』之思。

如何有系統的學與思?

莫過於上課讀書也!

Circuits and Electronics

A mixed-signal printed circuit board containing both analog and digital components.

A mixed-signal printed circuit board containing both analog and digital components. The board is one component of a 1000-node acoustic beamformer being developed at MIT’s Computer Science and Artificial Intelligence Laboratory. The board contains a pair of microphones, several resistors, capacitors, and digital integrated circuit chips.(Image courtesy of Ken Steele and Anant Agarwal.)

 


This free electrical engineering textbook provides a series of volumes covering electricity and electronics. The information provided is great for students, makers, and professionals who are looking to refresh or expand their knowledge in this field. These textbooks were written by Tony R. Kuphaldt and released under the Design Science License.

 

若實有心且又能善用工具︰

/lcapy

Lcapy is a Python package for linear circuit analysis. It uses SymPy
for symbolic mathematics.

Lcapy can analyse circuits described with netlists or by
series/parallel combinations of components.

From version 0.25.0, Lcapy performs more comprehensive circuit
analysis using combinations of DC, AC, and Laplace analysis. This
added functionality has resulted in a slight change of syntax.
cct.R1.V no longer prints the s-domain expression but the
decomposition of a signal into each of the transform domains.

Version 0.25.1 adds time-domain analysis for circuits without reactive
components.

Version 0.26.0 adds noise analysis.

More comprehensive documentation can be found at http://lcapy.elec.canterbury.ac.nz

Circuit analysis
—————-

The circuit is described using netlists, similar to SPICE, with
arbitrary node names (except for the ground node which is labelled 0).
The netlists can be loaded from a file or created at run-time. For
example:

pi@raspberrypi:~ $ python3
Python 3.5.3 (default, Jan 19 2017, 14:11:04) 
[GCC 6.3.0 20170124] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from lcapy import Circuit
>>> cct = Circuit()
>>> cct.add('Vs 2 0 {5 * u(t)}') 
>>> cct.add('Ra 2 1') 
>>> cct.add('Rb 1 0') 
>>> 
>>> cct[1].v
5⋅R_b⋅Heaviside(t)
──────────────────
     Rₐ + R_b     
>>> cct[2].v
5⋅Heaviside(t)
>>> cct.Ra.i
5⋅Heaviside(t)
──────────────
   Rₐ + R_b   
>>> cct.Ra.v
  5⋅R_b⋅Heaviside(t)                 
- ────────────────── + 5⋅Heaviside(t)
       Rₐ + R_b                      
>>> 

 

豈怕天下有難事乎☺

 

 

 

 

 

 

 

STEM 隨筆︰古典力學︰轉子【五】《電路學》

雖然我們可以從『馬克士威之方程組』推導出來克希荷夫的『電路定律』。事實上,克希荷夫是將歐姆的成果加以推廣得了『電流』與『電壓』兩個定律。在時間上,它早於『馬克士威之方程組』。那什麼是『電路』的呢?『電路』是由『兩端』two terminals 或『多端』的『元件』component 『連接』成『網路』 network 所構成。多個『元件』的『連接點』,稱之為『節點』,一個『節點』至少連接『兩個以上』的『元件』,祇用於『導電』的『導線』可以看成是理想之『零電阻』的『兩端元件』。一般的『電路』中,每個『元件』的『任一端點』都一定會連接到某一『節點』上,形成完整的『電流』網路。通常連結兩個『節點』的『元件』又叫做電路的『分支』 branch;連結多個『節點』形成的『封閉路徑』被稱作『網目』 mesh。在一個電路中,『元件』的『作用』與『行為』,『假設』可以用這個『元件』的『端點』之『電壓V 和流入或流出之『電流I 作完全的描述。

假設進入某個節點的電流符號為正,離開這個節點的電流則為負值,那麼這個節點所有元件之電流的『代數和』等於零。如果以方程式表達,對於電路中的任一節點
\sum_{k=1}^n i_k =0
此處,i_k 是某個元件 k 進入【+】或離開【-】這個節點的電流,它可以是實數或相量。

220px-KCL_-_Kirchhoff's_circuit_laws.svg
克希荷夫電流定律 KCL

假使我們從『電荷量Q 的觀點來看,『克希荷夫電流定律』是講 I = \frac{dQ}{dt} = 0也就是說,每一個『節點』上都沒有『電荷』的累積變化。這樣『電容器』滿足『電流定律』的嗎?

200px-Kirchhoff_voltage_law.svg
克希荷夫電壓定律 KVL

沿著封閉路徑,所有元件分支電壓 ── 兩節點間之電位差 ── 的代數和等於零。如果以方程式表達,對於電路的任一網目
\sum_{k=1}^m v_k = 0
此處,m 是這個封閉路徑中的元件編號,v_k 是元件兩端的分支電壓,可以是實數或相量。

如果我們用『電場E 的概念來表達,『克希荷夫電壓定律』可以寫成

\oint_{\mathbb{C}} \mathbf{E} \cdot d\mathbf{l} = 0

,此處 C 是封閉路徑。假使我們從『馬克士威之方程組』中的『法拉第感應定律』來看

\oint_{\mathbb{C}}\ \mathbf{E} \cdot d\mathbf{l} = - \frac {\mathrm{d}\Phi_\mathbf{B}}{\mathrm{d} t} = 0

也就是說任一『網目』中的『磁通量』都不隨時間變化。這樣『電感器』滿足『電壓定律』的嗎?

200px-Circuit_equivalence

『真實元件』一般用『理想元件』的『電路模型』表達

由於『電壓差』才具有物理意義,所謂的『元件』的『完全的描述』中講的『端點電壓』是相對於『接地』之『參考點』而言的『電壓值』,其實它也是一種『電壓差』。對一個『兩端點』元件來說,用左圖中的『電路一』表示,它的『特性』可以用 V_1I_1 來確定,假使『電路二』的元件,只要 V_2 = V_1,就可以得到 I_2 = I_1,即使這兩個元件的構造不同,它們在電路上的作用是『等效的』。

160px-Gluehlampe_01_KMJ

電燈電路

既然已經有了更好的『電磁學』,為什麼還要『電路學』的呢?因為『電磁學』的『馬克士威之方程組』是一組『偏微分方程式』,先不管說它能不能夠方便『求解』,在許多情況下,人們所關心的『物理量』,並不需要那麼的『詳盡』。舉例來說,一個『點亮燈泡』的簡單電路,為了避免『燈絲燒斷』,我們會關心流過『燈絲』的『總電流』大小是否會超過『額定電流』,但是我們並不在意那個『電流密度』的分佈如何,也不考慮『燈絲』的『溫度』、『形狀』或者『方向』等等,此時如果簡單的把『燈絲』看成一的『電阻』,用『歐姆定律』就得到了所要的『電流』不是更『容易』的嗎?這就是『電路學』在『工程領域』之『重要性』,它簡化了『實務』所不需要的『複雜性』與『精確性』!

─── 有人說︰在 EE 裡,人們用簡易的方法作事情 ───

─── 《【SONIC Π】電聲學導引《八》

 

即使能用『廣義相對論』計算足球運動之『測地線』,怕於踢球射門沒啥好處也!

故耳為求簡明扼要談談『機械能』產生器『引擎』

Engine

An engine or motor is a machine designed to convert one form of energy into mechanical energy.[1][2] Heat engines burn a fuel to create heat which is then used to do work. Electric motors convert electrical energy intomechanical motion; pneumatic motors use compressed air; and clockwork motors in wind-up toys use elastic energy. In biological systems, molecular motors, like myosins in muscles, use chemical energy to create forces and eventually motion.

Terminology

The word engine derives from Old French engin, from the Latin ingenium–the root of the word ingenious. Pre-industrial weapons of war, such as catapults, trebuchets and battering rams, were called siege engines, and knowledge of how to construct them was often treated as a military secret. The word gin, as in cotton gin, is short for engine. Most mechanical devices invented during the industrial revolution were described as engines—the steam engine being a notable example. However, the original steam engines, such as those by Thomas Savery, were not mechanical engines but pumps. In this manner, a fire engine in its original form was merely a water pump, with the engine being transported to the fire by horses.

In modern usage, the term engine typically describes devices, like steam engines and internal combustion engines, that burn or otherwise consume fuel to perform mechanical work by exerting a torque or linear force (usually in the form of thrust). Devices converting heat energy into motion are commonly referred to simply as engines.[3] Examples of engines which exert a torque include the familiar automobile gasoline and diesel engines, as well as turboshafts. Examples of engines which produce thrust include turbofans androckets.

When the internal combustion engine was invented, the term motor was initially used to distinguish it from the steam engine—which was in wide use at the time, powering locomotives and other vehicles such as steam rollers. The term motor derives from the Latin verb moto which means to set in motion, or maintain motion. Thus a motor is a device that imparts motion.

Motor and engine later came to be used largely interchangeably in casual discourse. However, technically, the two words have different meanings. An engine is a device that burns or otherwise consumes fuel, changing its chemical composition, whereas a motor is a device driven by electricity, air, or hydraulic pressure, which does not change the chemical composition of its energy source.[4][5] However, rocketry uses the term rocket motor, even though they consume fuel.

A heat engine may also serve as a prime mover—a component that transforms the flow or changes in pressure of a fluid into mechanical energy.[6] An automobile powered by an internal combustion engine may make use of various motors and pumps, but ultimately all such devices derive their power from the engine. Another way of looking at it is that a motor receives power from an external source, and then converts it into mechanical energy, while an engine creates power from pressure (derived directly from the explosive force of combustion or other chemical reaction, or secondarily from the action of some such force on other substances such as air, water, or steam).[7]

 

之一的電動馬達

Electric motor

An electric motor uses electrical energy to produce mechanical energy, usually through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator ordynamo. Traction motors used on vehicles often perform both tasks. Electric motors can be run as generators and vice versa, although this is not always practical. Electric motors are ubiquitous, being found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the thousands of kilowatts. Electric motors may be classified by the source of electric power, by their internal construction, and by their application.

The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.

To reduce the electric energy consumption from motors and their associated carbon footprints, various regulatory authorities in many countries have introduced and implemented legislation to encourage the manufacture and use of higher efficiency electric motors. A well-designed motor can convert over 90% of its input energy into useful power for decades.[23] When the efficiency of a motor is raised by even a few percentage points, the savings, in kilowatt hours (and therefore in cost), are enormous. The electrical energy efficiency of a typical industrial induction motor can be improved by: 1) reducing the electrical losses in the stator windings (e.g., by increasing the cross-sectional area of the conductor, improving the winding technique, and using materials with higher electrical conductivities, such as copper), 2) reducing the electrical losses in the rotor coil or casting (e.g., by using materials with higher electrical conductivities, such as copper), 3) reducing magnetic losses by using better quality magnetic steel, 4) improving the aerodynamicsof motors to reduce mechanical windage losses, 5) improving bearings to reduce friction losses, and 6) minimizing manufacturing tolerances. For further discussion on this subject, see Premium efficiency.)

By convention, electric engine refers to a railroad electric locomotive, rather than an electric motor.

 

『動力模型』,就直接進入『電路學』吧。

 

 

 

 

 

 

 

 

STEM 隨筆︰古典力學︰轉子【五】《電磁學》三

無論 □ □ 計算、模擬軟件如何百花齊放︰

EMpy

Electromagnetic Python

EMpy

EMpy (Electromagnetic Python) (not to be confused with empy) is a suite of numerical algorithms widely used in electromagnetism.

The package contains:

  • an isotropic and anisotropic transfer matrix algorithm;
  • an isotropic and anisotropic rigorous coupled wave analysis (RCWA) algorithm;
  • the numerical model of the frequency response of different well-known devices (Mach-Zehnder, Ring Resonators, etc.).

This list, very short by now, will hopefully enlarge to include an FDTD and an interface to the many very good software used in electromagnetism out there.

Examples

More (and more up-to-date) examples are available in the source code.

Here are some simple examples of the EMpy’s functionalities. More will come as soon as possible. Impatients can look at the examples in the distribution source.

/EMpy

EMpy – ElectroMagnetic Python

https://travis-ci.org/lbolla/EMpy.svg?branch=master https://api.codacy.com/project/badge/Grade/25215dbf146d47818023159ee64fc563

EMpy – Electromagnetic Python is a suite of algorithms widely known and used in electromagnetic problems and optics: the transfer matrix algorithm, the rigorous coupled wave analysis algorithm and more.

Run the examples in examples/* to have an idea how EMpy works.

Visit http://lbolla.github.io/EMpy/ for more information.

 

難以用來學習 □ □  那門學問也。

就像只有 ○ ○ 伴侶︰

 

Python Textbook Companion beta

The Textbook Companion activity aims to create a repository of reference material for Python by coding solved examples of standard engineering textbooks using Python. This activity intends to,

  • Make individuals learn Python through a practical approach
  • Provide a huge database of Companions as a learning resource
  • To make it easy for users of such textbooks to start using Python.
  • To improve the documentation available for Python

Elements of Electromagnetics

 

Cosine Propogating Wave
 

Vectors
 

I(0, t) I(l,t)
 


 

沒有 ○ ○行乎?

Author: M. N. O. Sadiku
Publisher: Oxford University Press
ISBN: 195686233
Contributor: Vishal MV
Institute/Organization: Indian Institute of Engineering Bombay
Department/Designation: Physics
Reviewer: Jovina D’Souza
GitHub: Elements of Electromagnetics
Contributed By: Vishal MV
Course: others
College/Institute/Organization: Indian Institute of Engineering Bombay
Department/Designation: Physics
Book Title: Elements of Electromagnetics
Author: M. N. O. Sadiku
Publisher: Oxford University Press
Year of publication: 2001
Isbn: 195686233
Edition: 3rd

 

 

 

 

 

 

 

 

STEM 隨筆︰古典力學︰轉子【五】《電磁學》二

傳說知名的電磁模擬軟體

/meep

Latest Docs Build Status Python versions 2.7–3.6

Meep is a free and open-source software package for simulating electromagnetic systems via the finite-difference time-domain(FDTD) method. Meep is an acronym for MIT Electromagnetic Equation Propagation.

Features

  • Free and open-source software under the GNU GPL.
  • Complete scriptability via Python, Scheme, or C++ APIs.
  • Simulation in 1d, 2d, 3d, and cylindrical coordinates.
  • Distributed memory parallelism on any system supporting the MPI standard.
  • Portable to any Unix-like operating system such as Linux, macOS, and FreeBSD.
  • Precompiled binary packages of latest builds and official releases available via Conda
  • Arbitrary anisotropic electric permittivity ε and magnetic permeability μ, along with dispersive ε(ω) and μ(ω) including loss/gain, nonlinear (Kerr & Pockels) dielectric and magnetic materials, and electric/magnetic conductivities σ.
  • PML absorbing boundaries as well as Bloch-periodic and perfect-conductor boundary conditions.
  • Exploitation of symmetries to reduce the computation size — even/odd mirror planes and 90°/180° rotations.
  • Field output in the HDF5 data format.
  • Arbitrary current sources including a guided-mode launcher.
  • Materials library containing list of predefined broadband, complex refractive indices.
  • Frequency-domain solver for finding the response to a continuous-wave source.
  • Field analyses including flux spectra, near to far transformations, modal decomposition, frequency extraction, local density of states, modal volume, Maxwell stress tensor, arbitrary functions; completely programmable.

Documentation

See the manual on readthedocs for the latest documentation.

 

之命名來自

Beep the Meep

Beep the Meep is a fictional alien who appeared in the Doctor Who Weekly comic strip based on the long-running British science fiction television series Doctor Who. The cute and cuddly appearance of Beep the Meep — a round, furry biped with large, expressive eyes and long ears — belies his true nature as a malevolent, homicidal would-be conqueror and dictator.

Beep first appeared in the comic strip Doctor Who and the Star Beast, written by Pat Mills and John Wagner and drawn by Dave Gibbons, which ran in issues #19-#26 of Doctor Who Weekly. The Meeps were an advanced and peaceful race, who lived in harmony and happiness until their natures were radically altered by their planet’s orbit passing close to the Black Sun. The radiation from the black star mutated them into an aggressive, expansionist species who began to mercilessly conquer and subjugate other planets.

Eventually, the Star Council authorized the use of the Wrarth Warriors, a genetically engineered insectoid race who acted as interstellar law enforcers. The war against the Meeps came to an end with the destruction of the Meep armada at the Battle of Yarras, but Beep, the Meeps’ ruler, escaped. Beep’s ship was pursued and shot down over Earth where it crash landed in the English city of Blackcastle. Beep sought refuge with two schoolchildren, using his fuzzy appearance to masquerade as a hapless, harmless creature being hunted by the ruthless Wrarth. It was in this guise that he encountered the Fourth Doctor, who protected him from the Wrarth until Beep’s true nature was revealed to him. He hypnotised some people and tried to use them to repair his spaceship, deciding to take off in a hyper-space jump, even though this would destroy Blackpool. The Doctor then aided the Wrarth in apprehending Beep, and he was taken away to face justice.

Beep the Meep’s weapon of choice was black star radiation, which he used both as a power source for his spaceship and for brainwashing people by exposing them to it. He also usually kept an energy pistol on his person, in a pouch concealed under his fur. Beep is a memorable and popular villain, mainly due to the contrast between his appearance and his true nature, and his constant fuming at not being taken seriously because of his cute appearance. He has returned to bedevil the Doctor several times, often targeting Earth as well because of the indignities both have heaped on him.

 

當真良有以也!

雖然樹莓派 debian stretch 上也有 meep ︰

pi@raspberrypi:~ apt-cache search meep libmeep-dev - development library for using meep libmeep-lam4-8 - library for using parallel (OpenMPI) version of meep libmeep-lam4-dev - development library for using parallel (OpenMPI) version of meep libmeep-mpi-default-dev - development library for using parallel (OpenMPI) version of meep libmeep-mpi-default8 - library for using parallel (OpenMPI) version of meep libmeep-mpich2-8 - library for using parallel (OpenMPI) version of meep libmeep-mpich2-dev - development library for using parallel (OpenMPI) version of meep libmeep-openmpi-dev - development library for using parallel (OpenMPI) version of meep libmeep-openmpi8 - library for using parallel (OpenMPI) version of meep libmeep8 - library for using meep meep - software package for FDTD simulation meep-lam4 - software package for FDTD simulation, parallel (OpenMPI) version meep-mpi-default - software package for FDTD simulation, parallel (OpenMPI) version meep-mpich2 - software package for FDTD simulation, parallel (OpenMPI) version meep-openmpi - software package for FDTD simulation, parallel (OpenMPI) version libmeep-lam4-7 - library for using parallel (OpenMPI) version of meep libmeep-mpi-default7 - library for using parallel (OpenMPI) version of meep libmeep-mpich2-7 - library for using parallel (OpenMPI) version of meep libmeep-openmpi7 - library for using parallel (OpenMPI) version of meep libmeep7 - library for using meep libmeep-lam4-6 - library for using parallel (OpenMPI) version of meep libmeep-mpi-default6 - library for using parallel (OpenMPI) version of meep libmeep-mpich2-6 - library for using parallel (OpenMPI) version of meep libmeep-openmpi6 - library for using parallel (OpenMPI) version of meep libmeep6 - library for using meep pi@raspberrypi:~ 

 

初步借

/pymeep

pyMEEP

This is a Python package for running simulations MEEP (http://ab-initio.mit.edu/wiki/index.php/Meep). It creates a .ctl file, runs it, and does some postprocessing and plotting. It is a very simplified adaption of pyMPB with some additional features.

 

範例驗證 MPI NG︰

==================================
=========== MEEP OUTPUT ===========
==================================

Using MPI version 3.1, 16 processes
source:, x-position, y-position, width/sqrt(3) (in y), depth (in z)
source:, -7.0, 0, 3.0000000000000004, 2.4000000000000004
fluxplane:, 0, x-position, y-position, width/sqrt(3) (in y), depth (in z)
fluxplane:, 1, -8.0, 0, 1.0, 0.8
-----------
Initializing structure...
Working in 3D dimensions.
Computational cell is 18 x 8 x 6 with resolution 12
     block, center = (0,0,0)
          size (1e+20,1.73205,0.8)
          axes (1,0,0), (0,1,0), (0,0,1)
          dielectric constant epsilon diagonal = (4.03407,4.03407,4.03407)
Halving computational cell along direction z
meep: Meep must be configured/compiled with MPB for add_eigenmode_source
--------------------------------------------------------------------------
MPI_ABORT was invoked on rank 13 in communicator MPI_COMM_WORLD
with errorcode 1.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.
You may or may not see output from other processes, depending on
exactly when Open MPI kills them.
--------------------------------------------------------------------------
finished on: 2018-07-01 15:40:33.079790 (duration: 0:00:13.192499)
returncode: 1
pi@raspberrypi:~/pymeep/examples/Sim3d_solid_waveguide_res012_dpml010 $ 

 

實在無奈的很呦☂祇得暇時嘗試編譯嘍☻

 

 

 

 

 

 

 

STEM 隨筆︰古典力學︰轉子【五】《電磁學》一

那麼在湯姆森發現『電子』之後,『原子』的面紗也已經逐漸揭開以來,又要如何量測一個『電子』的電荷量的呢?這就是科學史上著名的『油滴實驗』Oil-drop experiment,是美國物理學家羅伯特‧密立根 Robert Millikan 與哈維‧福萊柴爾 Harvey Fletcher 在一九零九年所進行的一項物理學實驗。密立根並因此獲得一九二三年的諾貝爾物理學獎。

265px-Millikan's_setup_for_the_oil_drop_experiment

450px-Simplified_scheme_of_Millikan’s_oil-drop_experiment

羅伯特‧密立根在諾貝爾獎頒獎典禮上,表示他的計算值為 4.774(5) \times {10}^{-10} 靜庫侖,約等於 1.5924(17) \times {10}^{-19}庫侖。現今已知的數值與密立根的結果差異小於百分之一,但是仍然比密立根測量結果的『標準誤差』 standard error 大了五倍,因此具有統計學上的顯著差異。在密立根油滴實驗六十年後,科學史學家發現,密立根一共向外公布了五十八次觀測數據,而他本人一共做過一百四十次觀測。他在實驗中先通過預先估測,去掉了那些他認為有偏差,以及誤差大的數據。

一九七四年美國大物理學家理查‧費曼 Richard Phillips Feynman 曾經在『加州理工學院』 California Institute of Technology 的一場畢業典禮演說當中述說『草包族科學』Cargo cult science,他其中有一段講:

從過往的經驗,我們學到了如何應付一些自我欺騙的情況。舉個例子,密立根做了個油滴實驗,量出了電子的帶電量,得到一個今天我們知道是不大對的答案。他的資料有點偏差,因爲他用了個不準確的空氣粘滯係數數值。於是,如果你把在密立根之後、進行測量電子帶電量所得到的資料整理一下,就會發現一些很有趣的現象: 把這些資料跟時間畫成座標圖,你會發現這個人得到的數值比密立根的數值大一點點,下一個人得到的資料又再大一點點,下一個又再大上一點點,最後,到了一個更大的數值才穩定下來。

為什麼他們沒有在一開始就發現新數值應該較高?── 這件事令許多相關的科學家慚愧臉紅 ── 因爲顯然很多人的做事方式 是:當他們獲得一個比密立根數值更高的結果時,他們以爲一定哪裡出了錯,他們會拚命尋找,並且找到了實驗有錯誤的原因。另一方面 ,當他們獲得的結果跟密立根的相仿時,便不會那麼用心去檢討 。因此,他們排除了所謂相差太大的資料,不予考慮。我們現在已經很清楚那些伎倆了,因此再也不會犯同樣的毛病。

── 從帶電體間的庫倫力到
一八九七年湯姆森量測了電子的電荷/質量比,再到
 一個電子的電荷量,電磁學歷史的路途實在是遙遠得很啊! ──

─── 《【SONIC Π】電聲學導引《三》

 

對事物性質之哲學思辨,常常不如實地驗證!先入為主的篩選數據又怎能是求知之道耶?

過去哲學中有所謂『物自身』 Thing itself  的『爭論』,試想假使有一『存在物T_{\Box} ,我們發現它有 P_i 種種『性質』,今有一物 T_{\bigcirc} 具有那些 P_i 等等『性質』,我們能說 T_{\bigcirc} 就是 T_{\Box} 的嗎?如果說『不能』,那麼又發現了 T_{\Box} 還有 Q_i 等等『性質』後,T_{\bigcirc} 也有那些 Q_i 種種『性質』時,我們就能說 T_{\bigcirc}T_{\Box} 的嗎??只怕也是『不能』的吧!這樣講來,發展『科學』又怎麼是『可能的』呢!!假使可以『窮盡』一物之『所有必要條件』能不能在邏輯上『歸結』出它也就是『充分條件』的呢?如果說兩個『事物』找不到可以『區分』的『性質』,難到不該是『同一類』的嗎??更不要說 P \Longrightarrow P ,自身就是『必要條件』之一,因而果真『所有必要條件』都真,它卻不是『充分條件』,這能不產生『矛盾』的嗎??事實上,就算我們知道 R \Longrightarrow P,我們對 P 也沒有真知道『多少』,它不過是 R 的『結論之一』的吧!我們能不能夠知道 P 是『什麼』的問題,也許並不必要『直指 P 自身』而後知,當我們知道『夠多P 不是『什麼』時,在我們了解『不少P 的『性質』後,我們就算說了知『是少』,針對於 P 也並非『一無所知』的吧!!

就像說為什麼人們難以理解『愛因斯坦』的『相對論』呢?難到是因為這個理論︰一、『光速』對於『所有伽利略的觀察者』都必然『相同』;二、『同時性』將被破壞;三、『動的時鐘』會走得『比較慢』,『跑的尺』會『縮短』;四、或者各種『悖論』存在 ,……… 的呢?也許講幾個『單純的概念C_i ,它的『長串』之『邏輯推理C_i \Longrightarrow \cdots  C_j \cdots C_k \cdots 令人『困惑』,讓人感覺『能是這樣』和『會是這樣』的嗎?然而如果『接受前提』,卻又不想『同意結論』,大概只必然是『自相矛盾』的了!假使從『所知』與『所行』的來看『人間事』之『定奪』,或許只可以『抽象的說』,『相對』的『意義』在於對所有『觀察者』沒有『所不同』,人各以其『所知所行』為是『度量』,那麼又怎麽會有『知行』合不合一的問題的呢?又怎麽會有『知難』與『行難』之比較之說??

─── 摘自《物理哲學·下中……

 

因此我們得要知道勞侖茲力是來自於『重複實驗』之歸結也。

電磁力

電磁力英語:electromagnetic force)是處於電場磁場電磁場帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力弱作用力引力光子是傳遞電磁力的媒介。[1]:13電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。

對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。[2]:6-7[3]:8-9

概述

電動力學裏,若考慮一帶電粒子在電磁場中的受力,可以用以下的勞侖茲力定律表示:

\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ) 

其中,\displaystyle \mathbf {F} 是勞侖茲力,\displaystyle q 是帶電粒子的電荷量\displaystyle \mathbf {E} 是電場,\displaystyle \mathbf {v} 是帶電粒子的速度\displaystyle \mathbf {B} 是磁場。

勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律 。

這方程式右邊有兩項,第一項是電場力 \displaystyle \mathbf {F} _{E}=q\mathbf {E} ,第二項是磁場力 \displaystyle \mathbf {F} _{B}=q\mathbf {v} \times \mathbf {B} 。

當兩個帶電粒子都以相同速度 \displaystyle \mathbf {v} 移動時,帶正電粒子 \displaystyle +q 會感受到電場力\displaystyle \mathbf {F} _{E} 、磁場力 \displaystyle \mathbf {F} _{M} 與淨力\displaystyle \mathbf {F} _{T} ,帶負電粒子 \displaystyle -q 會感受到電場力 \displaystyle -\mathbf {F} _{E} 、磁場力 \displaystyle -\mathbf {F} _{M} 與淨力 \displaystyle -\mathbf {F} _{T} 。注意到作用力 \displaystyle \mathbf {F} _{T} 和反作用力 \displaystyle -\mathbf {F} _{T} 不同線。在本圖內,速度 \displaystyle \mathbf {v} 的大小不按比例繪製。

靜電學裏,場源電荷所產生的電場與試探距離的平方成反比,所以電場力與試探距離的平方成反比。在靜磁學裏,無法獲得類似結果,因為只有移動中的電荷才會產生磁場,而移動中的點電荷無法構成平穩電流,無法用必歐-沙伐定律正確地計算出磁場。在電動力學裏,應用推遲勢概念,可以推導出必歐-沙伐點電荷定律。這定律給出,移動中的場源電荷所產生的電場、磁場與試探距離的平方成反比。所以,電磁力遵守平方反比定律[4]:435-440

作用與反作用定律又分為兩種版本:強版本和弱版本。這裡,第三定律所表述的是「弱版作用與反作用定律」。而「強版作用與反作用定律」,除了弱版作用與反作用定律所要求的以外,還要求作用力和反作用力都作用在同一條直線上。萬有引力靜電力都遵守強版作用與反作用定律。可是,在某些狀況下,作用力和反作用力並不同線(兩作用點的連線)。

設想兩個呈平移運動電荷,其平移速度相同,但並不垂直於兩電荷的連線。由於必歐-沙伐點電荷定律洛倫茲力定律計算出的作用力和反作用力並不同線,這一對電磁力只遵守弱版牛頓第三運動定律。若兩移動的電荷,其移動的速度互相垂直,則它們各自感受到的電磁力不遵守弱版牛頓第三運動定律。[5]:7[6]:349-351

 

若能注意理論初創時,所生之『解釋的矛盾』︰

法拉第弔詭

法拉第弔詭Faraday paradox)是一個關於法拉第感應定律的物理實驗。於1831年,物理學大師麥可·法拉第推斷出法拉第感應定律(簡稱「法拉第定律」),但是,在應用這定律來解釋法拉第弔詭的過程中,他遇到了很多困難。這在本文會有詳細相關敘述。

實驗組態

圖1,法拉第的圓盤形發電機。圓盤形導體(淺藍色)以角速率 \displaystyle \omega 旋轉於由一塊圓柱形永久磁鐵(未繪出)產生的磁場 \displaystyle \mathbf {B} (以棕褐色箭矢表示)。勞侖茲力的磁部分 \displaystyle \mathbf {v} \times \mathbf {B} 趨動徑向電流,從圓盤中心,流過圓盤,抵達邊緣(天藍色),然後通過底端金屬刷(五角形)、支撐架(深藍色)、轉軸,返回圓盤中心,形成完整迴路。只要轉動圓盤,就可以從機械運動產生電流(金黃色)。

如右圖所示,法拉第弔詭實驗只需要一些簡單器件:圓柱形永久磁鐵、圓盤形導體、金屬刷、轉軸導體、支撐架導體,檢流計。圓柱形永久磁鐵與圓盤形導體分別安裝於各自的轉軸,可以各自自由旋轉。將安裝於支撐架一端的金屬刷與圓盤邊緣相接觸,又將與圓盤相連接的轉軸安裝於支撐架另一端,就可以形成完整閉合電路。在這閉合電路中,串聯一個檢流計來測量電流

實驗程序

這實驗的進行有三個步驟:

  1. 假設磁鐵為固定不動,不能旋轉,只讓圓盤旋轉,則檢流計會測量到直流。這實驗設備的功能類似發電機,因此稱為「法拉第發電機」、又稱為法拉第圓盤Faraday disc)、或單極發電機homopolar generator)。
  2. 假設圓盤為固定不動,不能旋轉,只讓磁鐵旋轉,則檢流計不會測量到直流
  3. 假設讓圓盤與磁鐵以同角速度旋轉,則檢流計會測量到直流,如同第一步驟得到的結果。

為什麼弔詭?

有些物理學者稱這實驗為弔詭,因為,猛然一看,這實驗似乎違背了法拉第定律,不論是甚麼部分在旋轉,穿過圓盤的磁通量好像都一樣,所以,從磁通量觀點來看,對於這三個案例,電動勢都應該預測為零。這觀點錯誤地選擇了用來計算磁通量的曲面,對於這論點,稍後會有更詳細解釋。

透過鐵粉顯示出的磁場線。將條狀磁鐵放在白紙下面,鋪灑一堆鐵粉在白紙上面,這些鐵粉會依著磁場線的方向排列,形成一條條的曲線,在曲線的每一點顯示出磁場線的方向。

磁場線觀點來看,這弔詭又有不同的理論結果。在法拉第的電磁感應模型裏,磁場是由想像的磁場線組成。若將條狀磁鐵放在白紙下面,鋪灑一堆鐵粉在白紙上面,這些鐵粉會依著磁場線的方向排列,形成一條條的曲線,在曲線的每一點顯示出磁場線的方向。假若電動勢與磁場線被電路切割的速率呈正比,則從磁鐵的參考系觀測,磁場線為固定不動。所以,相對於磁鐵,將圓盤旋轉,或相對於圓盤,將磁鐵旋轉,這兩種動作應該都會生成電動勢,但是若將磁鐵與圓盤一同旋轉,則電動勢為零。

法拉第的解釋

在法拉第的「電磁感應模型」裏,當閉合電路切割過磁場線時,會有感應電流生成於這閉合電路。按照這模型,當圓盤旋轉或磁鐵旋轉時,應該會有感應電流流動於法拉第圓盤,而當磁鐵與圓盤一同旋轉時,應該不會出現感應電流。然而,這結果與實驗結果迥然不同。法拉第試圖解釋這差異,他假定當磁鐵旋轉時,磁鐵的整個磁場於其伴隨的磁場線固定不動(注意到這是一個完全正確的繪景,雖然也許不太容易從電磁感應模型推理出來)。換句話說,磁場線的參考系與磁鐵的參考系不同。在下一個段落,會有詳細論述,現代物理學(自從發現電子之後)不需要電磁感應模型,就能夠完全解釋這弔詭。

現代解釋

電子與勞侖茲力

自從約瑟夫·湯姆森於1897年發現電子之後,物理學者獲得了微觀解析這弔詭的能力。注意到移動於磁場 \displaystyle \mathbf {B} 的電子會感受到勞侖茲力 \displaystyle \mathbf {F} _{Lorentz}=q\mathbf {v} \times \mathbf {B} ;其中,\displaystyle q 是電子所帶電荷量\displaystyle \mathbf {v} 是電子移動速度。如圖1所示,呈旋轉運動中的圓盤導體,其內部自由電子會感受到勞侖茲力。這勞侖茲力垂直於電子的速度 \displaystyle \mathbf {v} ,也垂直於磁場 \displaystyle \mathbf {B} ,而磁場 \displaystyle \mathbf {B} 又垂直於圓盤。所以,按照右手定則,這勞侖茲力的方向(對於電子)是反徑向,即朝著轉軸的方向;對於正價粒子,勞侖茲力的方向是徑向,即朝著圓盤邊緣的方向。

當然,這徑向力會生成動生電動勢,造成電流流動於整個電路,因為它造成了電子的反徑向移動。這電子的反徑向運動又會生成另一股勞侖茲力,反抗隨著圓盤旋轉的電子圓周運動,這趨向於使圓盤旋轉變慢。因此,只有倚賴不斷地施加外力,圓盤才能持續旋轉。由於圓盤持續旋轉,電流也持續地流動於整個電路。這機制與實驗觀測相符合:每當圓盤旋轉,就會生成電流,不論磁場的屬性為何。

應用勞侖茲力定律可以解釋法拉第弔詭,但這也在學術界引起極大的爭論──到底磁場是否隨著磁鐵旋轉?按照勞侖茲力定律,磁場與導體之間的相對運動,直接地與作用於電荷的勞侖茲力有關,物理學者猜測,對於磁鐵與圓盤共同旋轉而電動勢不為零的案例,磁場應該不會與磁鐵共同旋轉,否則,磁場就無法與圓盤呈相對運動。

 

往往深負『啟發性』,可以砥礪『科學思維』。

自能感受物理大師費曼之言矣◎

法拉第感應定律不適用案例

圖4,根據費曼教科書的例子給出的案例。對於這案例,法拉第定律不適用。光電導體長方塊(淡藍色)沿著兩條平行導線滑行。在某狹窄固定區域(深藍色),照射強烈光波,施加強烈磁場。當長方塊行經這狹窄固定區域時,被照射到的材料會出現導電性質。由於勞侖茲力定律,整個電路會出現電動勢與電流(金黃色)。

如圖4所示,光電導體長方塊平移於兩條平行導線。在某狹窄固定區域,照射強烈光波,施加強烈磁場。當長方塊行經這狹窄固定區域時,被照射到的光電導體會出現導電性質。由於勞侖茲力定律,會有電流從頂方導線,經過這狹窄固定區域的光電導體,流動到底方導線,然後經過連接電路,回到頂方導線。對於這案例,電路固定不動,穿過電路的磁通量不變,所以,應用法拉第定律計算出來的電流為零。但是,勞侖茲力定律建議,電流實際存在。

這案例是根據物理大師理查·費曼想出來的點子,凸顯法拉第定律(即連結電動勢與磁通量之間的關係的版本,費曼稱為「通量定則 」)不適用於某些狀況的事實。費曼這樣說:[2]

對於這案例,通量定則不適用。通量定則只能應用於一類電路,其路徑的實體物質不能改變。假若電路路徑的實體物質有所改變,則必須回到基本定律。以下兩個基本定律永遠會給出正確的物理

\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ) 
\displaystyle \nabla \times \mathbf {E} =-{\begin{matrix}{\frac {\partial }{\partial t}}\end{matrix}}\mathbf {B} 

— 理查·費曼 《費曼物理學講義》

費曼應用勞侖茲定律來解釋為何會出現這種現象。重點是通量定則只適用於某些狀況,雖然這些是非常實用的狀況。

 

當可了解

倜立實驗

倜立實驗電路圖

通量定則不適用於倜立實驗。圖5展示「倜立實驗」。[5]在這由物理學者唐納德·倜立Donald Tilley)設計出的實驗裏,整個電路是由兩個迴路或網目組成。在右手邊迴路串聯了一具檢流計。在左手邊迴路中心置放了一塊磁鐵,其產生的磁場為 \displaystyle \mathbf {B} 。兩個迴路共同享有一個轉閘開關。首先設定轉閘開關與端點1相接觸,左手邊迴路為開路,右手邊迴路為閉路。然後旋轉轉閘開關,改與端點2相接觸,使得右手邊迴路成為開路,左手邊迴路仍舊為開路,但整個電路成為閉路。注意到磁場並沒有改變,但是穿過的面積變大,因此,磁通量也會改變。可是,檢流計的量針並沒有偏動(假定可以忽略轉閘開關旋轉時的效應),這意味著檢流計並沒有檢測到任何感應電動勢。所以,法拉第定律不適用於這案例。

有些物理學者認為,在法拉第實驗裏,感應電壓的出現,是因為電路切割了磁場線,而不是因為實際磁通量有所變化。這可以從倜立實驗觀察得知,因為,雖然穿過電路的磁通量有所變化,並沒有任何磁場線移動經過電路,所以不會有任何感應電流。

物理學者艾倫·納斯邦Allen Nussbaum)建議,只有在磁通量改變的時候,同時也給出機械功,法拉第定律才適用。[6]思考處於磁場 \displaystyle \mathbf {B} 、載有電流 \displaystyle I 的載流導線,其所感受到的作用力可以表達為

\displaystyle \mathrm {d} \mathbf {F} =I\mathrm {d} {\boldsymbol {\ell }}\mathbf {\times } \mathbf {B} 

其中,\displaystyle \mathrm {d} \mathbf {F} 是載流導線所感受到的微小作用力,\displaystyle \mathrm {d} {\boldsymbol {\ell }} 是載流導線的微小線元素。

假設微小線元素 \displaystyle \mathrm {d} {\boldsymbol {\ell }} 的位移為 \displaystyle \mathrm {d} \mathbf {r} ,則所做的機械功 \displaystyle \mathrm {d} W 為

\displaystyle \mathrm {d} W=\mathrm {d} \mathbf {F} \cdot \mathrm {d} \mathbf {r} =(I\mathrm {d} {\boldsymbol {\ell }}\mathbf {\times } \mathbf {B} )\cdot \mathrm {d} \mathbf {r} 

微小線元素 \displaystyle \mathrm {d} {\boldsymbol {\ell }} 因為位移而遮蓋的面積 \displaystyle \mathrm {d} \mathbf {S} 為

\displaystyle \mathrm {d} \mathbf {S} =\mathrm {d} \mathbf {r} \mathbf {\times } \mathrm {d} {\boldsymbol {\ell }} 

所做的機械功為

\displaystyle \mathrm {d} W=I\mathbf {B} \cdot \mathrm {d} \mathbf {s} =I\mathrm {d} \Phi 

其中,\displaystyle \Phi 是磁通量。

這機械功等於電位\displaystyle V 的電荷 \displaystyle \mathrm {d} q 的電位能

\displaystyle \mathrm {d} W=V\mathrm {d} q=VI\mathrm {d} t 

這樣,可以得到法拉第定律的方程式:

\displaystyle \mathrm {d} \mathbf {\Phi } =V\mathrm {d} t 
注意到,法拉第定律的方程式為正確無誤,若且唯若,機械功 \displaystyle \mathrm {d} W 不等於零。換句話說,只有倚賴做機械功來改變磁通量,法拉第定律才正確無誤。

回到倜立實驗。由於磁通量的改變並沒有做出機械功(假定扭轉轉閘開關所做的機械功為零),所以,法拉第定律不適用,不會出現任何電動勢或電流。

 

的旨趣吧☆