光的世界︰派生科學計算三

從『聯立方程式』 Simultaneous equations 、『線性方程組』 System of linear equations 、『矩陣』 Matrix 、『行列式』 Determinant …… 觀之,『高斯消去法』 Gaussian Elimination 歷史

History

The method of Gaussian elimination appears in the Chinese mathematical text Chapter Eight Rectangular Arrays of The Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen problems, with two to five equations. The first reference to the book by this title is dated to 179 CE, but parts of it were written as early as approximately 150 BCE.[1][2] It was commented on by Liu Hui in the 3rd century.

The method in Europe stems from the notes of Isaac Newton.[3][4] In 1670, he wrote that all the algebra books known to him lacked a lesson for solving simultaneous equations, which Newton then supplied. Cambridge University eventually published the notes as Arithmetica Universalis in 1707 long after Newton left academic life. The notes were widely imitated, which made (what is now called) Gaussian elimination a standard lesson in algebra textbooks by the end of the 18th century. Carl Friedrich Gauss in 1810 devised a notation for symmetric elimination that was adopted in the 19th century by professional hand computers to solve the normal equations of least-squares problems.[5] The algorithm that is taught in high school was named for Gauss only in the 1950s as a result of confusion over the history of the subject.[6]

Some authors use the term Gaussian elimination to refer only to the procedure until the matrix is in echelon form, and use the term Gauss-Jordan elimination to refer to the procedure which ends in reduced echelon form. The name is used because it is a variation of Gaussian elimination as described by Wilhelm Jordan in 1888. However, the method also appears in an article by Clasen published in the same year. Jordan and Clasen probably discovered Gauss–Jordan elimination independently.[7]

 

久遠矣。或許很多人不曉此法漢代《九章算術》中已有,甚或不知作注的『Liu Hui』劉徽是何許人也!!而後歷經數百代凝鑄成

線性代數

線性代數是關於向量空間線性映射的一個數學分支。它包括對線、面和子空間的研究,同時也涉及到所有的向量空間的一般性質。

坐標滿足滿足線性方程的點集形成 n 維空間中的一個超平面n 個超平面相交於一點的條件是線性代數研究的一個重要焦點。此項研究源於包含多個未知數的線性方程組。這樣的方程組可以很自然地表示為矩陣和向量的形式。[1][2]

線性代數既是純數學也是應用數學的核心。例如,放寬向量空間的公理就產生了抽象代數,也就出現了若干推廣。泛函分析研究無窮維情形的向量空間理論。線性代數與微積分結合,使得微分方程線性系統的求解更加便利。 線性代數的理論已被泛化為算子理論

線性代數的方法還用在解析幾何工程物理自然科學計算機科學計算機動畫社會科學(尤其是經濟學)中。由於線性代數是一套完善的理論,非線性數學模型通常可以被近似為線性模型。

250px-Linear_subspaces_with_shading.svg

三維歐氏空間R3是一個向量空間,而通過原點的線及平面是R3的向量子空間

歷史

線性代數的研究最初出現於對行列式的研究上。行列式當時被用來求解線性方程組。萊布尼茨在1693年使用了行列式。隨後,加布里爾·克拉默在1750年推導出求解線性方程組的克萊姆法則。然後,高斯利用高斯消元法發展出求解線性系統的理論。這也被列為大地測量學的一項進展。[3][4]

現代線性代數的歷史可以上溯到19世紀中期的英國。1843年,哈密頓發現了四元數。1844年,赫爾曼·格拉斯曼發表了他的著作《線性外代數》(Die lineare Ausdehnungslehre),包括了今日線性代數的一些主題。1848年,詹姆斯·西爾維斯特引入了矩陣(matrix),該詞是「子宮」的拉丁語。阿瑟·凱萊在研究線性變換時引入了矩陣乘法和轉置的概念。很重要的是,凱萊使用了一個字母來代表一個矩陣,因此將矩陣當做了聚合對象。他也意識到矩陣和行列式之間的聯繫。[3]

不過除了這些早期的文獻以外.線性代數主要是在二十世紀發展的。在抽象代數環論開發之前,矩陣只有模糊不清的定義。隨著狹義相對論的到來,很多開拓者發現了線性代數的微妙。進一步的,解偏微分方程克萊姆法則的例行應用導致了大學的標準教育中包括了線性代數。例如,E.T. Copson寫到:

當我在1922年到愛丁堡做年輕的講師的時候,我驚奇的發現了不同於牛津的課程。這裡包括了我根本就不知道的主題如勒貝格積分矩陣論數值分析黎曼幾何
——E.T. Copson,《偏微分方程》前言, 1973

1882年,Hüseyin Tevfik Pasha寫了一本書,名為《線性代數》。[5][6]第一次現代化精確定義向量空間是在1888年,由朱塞佩·皮亞諾提出。在1888年,弗蘭西斯·高爾頓還發起了相關係數的應用。經常有多於一個隨機變量出現並且它們可以互相關。在多變元隨機變量的統計分析中,相關矩陣是自然的工具。所以這種隨機向量的統計研究幫助了矩陣用途的開發。到1900年,一種有限維向量空間的線性變換理論被提出。在20世紀上半葉,許多前幾世紀的想法和方法被總結成抽象代數,線性代數第一次有了它的現代形式。矩陣在量子力學狹義相對論統計學上的應用幫助線性代數的主題超越了純數學的範疇。計算機的發展導致更多地研究致力於有關高斯消元法和矩陣分解的有效算法上。線性代數成為了數字模擬和模型的基本工具。[3]

 

其論述能不厚重乎?其內容能不範圍廣闊耶!系統符號混雜、概念層出不窮、各種分支頻起旁徵博引,豈不目不暇給望洋興嘆呀!!

此處藉著『高斯消去法』例子為範︰

Gaussian elimination

Example of the algorithm

Suppose the goal is to find and describe the set of solutions to the following system of linear equations:

{\begin{alignedat}{7}2x&&\;+\;&&y&&\;-\;&&z&&\;=\;&&8&\qquad (L_{1})\\-3x&&\;-\;&&y&&\;+\;&&2z&&\;=\;&&-11&\qquad (L_{2})\\-2x&&\;+\;&&y&&\;+\;&&2z&&\;=\;&&-3&\qquad (L_{3})\end{alignedat}}

The table below is the row reduction process applied simultaneously to the system of equations, and its associated augmented matrix. In practice, one does not usually deal with the systems in terms of equations but instead makes use of the augmented matrix, which is more suitable for computer manipulations. The row reduction procedure may be summarized as follows: eliminate x from all equations below  L_{1}, and then eliminate y from all equations below  L_{2}. This will put the system into triangular form. Then, using back-substitution, each unknown can be solved for.

System of equations Row operations Augmented matrix
{\begin{alignedat}{7}2x&&\;+\;&&y&&\;-\;&&z&&\;=\;&&8&\\-3x&&\;-\;&&y&&\;+\;&&2z&&\;=\;&&-11&\\-2x&&\;+\;&&y&&\;+\;&&2z&&\;=\;&&-3&\end{alignedat}}   \left[{\begin{array}{ccc|c}2&1&-1&8\\-3&-1&2&-11\\-2&1&2&-3\end{array}}\right]
{\begin{alignedat}{7}2x&&\;+&&y&&\;-&&\;z&&\;=\;&&8&\\&&&&{\frac {1}{2}}y&&\;+&&\;{\frac {1}{2}}z&&\;=\;&&1&\\&&&&2y&&\;+&&\;z&&\;=\;&&5&\end{alignedat}} L_{2}+{\frac {3}{2}}L_{1}\rightarrow L_{2}
L_{3}+L_{1}\rightarrow L_{3}
\left[{\begin{array}{ccc|c}2&1&-1&8\\0&1/2&1/2&1\\0&2&1&5\end{array}}\right]
{\begin{alignedat}{7}2x&&\;+&&y\;&&-&&\;z\;&&=\;&&8&\\&&&&{\frac {1}{2}}y\;&&+&&\;{\frac {1}{2}}z\;&&=\;&&1&\\&&&&&&&&\;-z\;&&\;=\;&&1&\end{alignedat}} L_{3}+-4L_{2}\rightarrow L_{3} \left[{\begin{array}{ccc|c}2&1&-1&8\\0&1/2&1/2&1\\0&0&-1&1\end{array}}\right]
The matrix is now in echelon form (also called triangular form)
{\begin{alignedat}{7}2x&&\;+&&y\;&&&&\;\;&&=\;&&7&\\&&&&{\frac {1}{2}}y\;&&&&\;\;&&=\;&&{\frac {3}{2}}&\\&&&&&&&&\;-z\;&&\;=\;&&1&\end{alignedat}} L_{2}+{\frac {1}{2}}L_{3}\rightarrow L_{2}
L_{1}-L_{3}\rightarrow L_{1}
\left[{\begin{array}{ccc|c}2&1&0&7\\0&1/2&0&3/2\\0&0&-1&1\end{array}}\right]
  {\begin{alignedat}{7}2x&&\;+&&y\;&&&&\;\;&&=\;&&7&\\&&&&y\;&&&&\;\;&&=\;&&3&\\&&&&&&&&\;z\;&&\;=\;&&-1&\end{alignedat}} 2L_{2}\rightarrow L_{2}
-L_{3}\rightarrow L_{3}
  \left[{\begin{array}{ccc|c}2&1&0&7\\0&1&0&3\\0&0&1&-1\end{array}}\right]
{\begin{alignedat}{7}x&&\;&&\;&&&&\;\;&&=\;&&2&\\&&&&y\;&&&&\;\;&&=\;&&3&\\&&&&&&&&\;z\;&&\;=\;&&-1&\end{alignedat}}   L_{1}-L_{2}\rightarrow L_{1}
{\frac {1}{2}}L_{1}\rightarrow L_{1}
  \left[{\begin{array}{ccc|c}1&0&0&2\\0&1&0&3\\0&0&1&-1\end{array}}\right]

The second column describes which row operations have just been performed. So for the first step, the x is eliminated from L_{2} by adding  {\begin{matrix}{\frac {3}{2}}\end{matrix}}L_{1} to  L_{2}. Next x is eliminated from  L_{3} by adding  L_{1} to  L_{3}. These row operations are labelled in the table as

L_{2}+{\frac {3}{2}}L_{1}\rightarrow L_{2}
L_{3}+L_{1}\rightarrow L_{3}.

Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is z = -1, y = 3, and x = 2. So there is a unique solution to the original system of equations.

Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss-Jordan elimination, to distinguish it from stopping after reaching echelon form.

 

翻古出新,談談如何用『SymPy』之

Matrices

Matrices (linear algebra)

模組為『工具』,操作

初等矩陣

線性代數中,初等矩陣(又稱為基本矩陣[1])是一個與單位矩陣只有微小區別的矩陣。具體來說,一個n階單位矩陣E經過一次初等行變換或一次初等列變換所得矩陣稱為n階初等矩陣。[2]

操作

初等矩陣分為3種類型,分別對應著3種不同的行/列變換。

兩行(列)互換:
  R_i \leftrightarrow R_j
把某行(列)乘以一非零常數:
kR_i \rightarrow R_i,\ 其中   k \neq 0
把第i行(列)加上第j行(列)的k倍:
R_i + kR_j \rightarrow R_i

初等矩陣即是將上述3種初等變換應用於一單位矩陣的結果。以下只討論對某行的變換,列變換可以類推。

行互換

這一變換Tij,將一單位矩陣的第i行的所有元素與第j行互換。

 T_{i,j} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & & \\ & & 1 & & 0 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix}\quad

性質

  • 逆矩陣即自身: T_{ij}^{-1} = T_{ij}
  • 因為單位矩陣的行列式為1,故  |T_{ij}|=-1。與其他相同大小的方陣A亦有一下性質:  |T_{ij}A|=-|A|

把某行乘以一非零常數

這一變換Tim),將第i行的所有元素乘以一非零常數m

 T_i (m) = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & m & & & \\ & & & & 1 & & \\ & & & & & \ddots & \\ & & & & & & 1\end{bmatrix}\quad

性質

  • 逆矩陣為 T_{i}(m)^{-1} = T_{i}(\frac{1}{m})
  • 此矩陣及其逆矩陣均為對角矩陣
  • 其行列式 |T_{i}(m)|=m。故對於一等大方陣A|T_{i}(m)A|=m|A|

把第i行加上第j行的m

這一變換Tijm),將第i行加上第j行的m倍。

 T_{i,j}(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & \ddots & & & & \\ & & m & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix}

性質

  • 逆矩陣具有性質  T_{ij}(m)^{-1}=T_{ij}(-m)
  • 此矩陣及其逆矩陣均為三角矩陣
  • |T_{ij}(m)|=1。故對於一等大方陣A有: |T_{ij}(m)A| = |A|

 

親自『實證』消去法的精神,體驗用『工具』來『學習』之樂趣吧! !

省思這個『初等』當真可『模擬』紙筆運算嗎??

pi@raspberrypi:~ $ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> from sympy import *
>>> init_printing()
>>> a, b, c, d, e, f, g, h, i, m = symbols('a, b, c, d, e, f, g, h, i, m')
>>> M = Matrix([[a, b, c], [d, e, f], [g, h, i]])
>>> M
⎡a  b  c⎤
⎢       ⎥
⎢d  e  f⎥
⎢       ⎥
⎣g  h  i⎦

>>> 二三列交換 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
>>> 二三列交換
⎡1  0  0⎤
⎢       ⎥
⎢0  0  1⎥
⎢       ⎥
⎣0  1  0⎦
>>> 二三列交換 * M
⎡a  b  c⎤
⎢       ⎥
⎢g  h  i⎥
⎢       ⎥
⎣d  e  f⎦

>>> 第二列乘m = Matrix([[1, 0, 0], [0, m, 0], [0, 0, 1]])
>>> 第二列乘m
⎡1  0  0⎤
⎢       ⎥
⎢0  m  0⎥
⎢       ⎥
⎣0  0  1⎦
>>> 第二列乘m * M
⎡ a    b    c ⎤
⎢             ⎥
⎢d⋅m  e⋅m  f⋅m⎥
⎢             ⎥
⎣ g    h    i ⎦

>>> 第三列加第二列乘m = Matrix([[1, 0, 0], [0, 1, 0], [0, m, 1]])
>>> 第三列加第二列乘m
⎡1  0  0⎤
⎢       ⎥
⎢0  1  0⎥
⎢       ⎥
⎣0  m  1⎦
>>> 第三列加第二列乘m * M
⎡   a        b        c   ⎤
⎢                         ⎥
⎢   d        e        f   ⎥
⎢                         ⎥
⎣d⋅m + g  e⋅m + h  f⋅m + i⎦
>>> 

 

或可得『自學』之法哩!!??

>>> AM = Matrix([[2, 1, -1, 8], [-3, -1, 2, -11], [-2, 1, 2, -3]])
>>> AM
⎡2   1   -1   8 ⎤
⎢               ⎥
⎢-3  -1  2   -11⎥
⎢               ⎥
⎣-2  1   2   -3 ⎦

>>> L2加二分之三L1 = Matrix([[1, 0, 0], [3/2, 1, 0], [0, 0, 1]])
>>> L2加二分之三L1
⎡ 1   0  0⎤
⎢         ⎥
⎢1.5  1  0⎥
⎢         ⎥
⎣ 0   0  1⎦

>>> L2加二分之三L1 * AM
⎡2    1   -1    8 ⎤
⎢                 ⎥
⎢0   0.5  0.5  1.0⎥
⎢                 ⎥
⎣-2   1    2   -3 ⎦

>>> L3加上L1 = Matrix([[1, 0, 0], [0, 1, 0], [1, 0, 1]]) 
>>> L3加上L1
⎡1  0  0⎤
⎢       ⎥
⎢0  1  0⎥
⎢       ⎥
⎣1  0  1⎦

>>> L3加上L1 * AM
⎡2   1   -1   8 ⎤
⎢               ⎥
⎢-3  -1  2   -11⎥
⎢               ⎥
⎣0   2   1    5 ⎦

>>> L3加上L1 * L2加二分之三L1 * AM
⎡2   1   -1    8 ⎤
⎢                ⎥
⎢0  0.5  0.5  1.0⎥
⎢                ⎥
⎣0   2    1    5 ⎦

>>> L2加二分之三L1 * L3加上L1 * AM
⎡2   1   -1    8 ⎤
⎢                ⎥
⎢0  0.5  0.5  1.0⎥
⎢                ⎥
⎣0   2    1    5 ⎦
# ……

 

 

 

 

 

 

 

 

 

 

 

 

光的世界︰派生科學計算二‧下

如果我們藉著維基百科『三次函數』詞條,來個拉格朗日求解之旅 ,自會發現用『SymPy』作符號運算的好處︰

Cubic function

In algebra, a cubic function is a function of the form

f(x)=ax^{3}+bx^{2}+cx+d,\,

where a is nonzero.

Setting f(x) = 0 produces a cubic equation of the form:

ax^{3}+bx^{2}+cx+d=0.\,

The solutions of this equation are called roots of the polynomial f(x). If all of the coefficients a, b, c, and d of the cubic equation are real numbers then there will be at least one real root (this is true for all odd degree polynomials) and if the coefficients are complex numbers then there will be at least one complex root (this is true for all non-constant polynomials). All of the roots of the cubic equation can be found algebraically. (This is also true of a quadratic or quartic (fourth degree) equation, but no higher-degree equation, by the Abel–Ruffini theorem). The roots can also be found trigonometrically. Alternatively, numerical approximations of the roots can be found using root-finding algorithms like Newton’s method.

The coefficients do not need to be complex numbers. Much of what is covered below is valid for coefficients of any field with characteristic 0 or greater than 3. The solutions of the cubic equation do not necessarily belong to the same field as the coefficients. For example, some cubic equations with rational coefficients have roots that are non-rational (and even non-real) complex numbers.

Lagrange’s method

In his paper Réflexions sur la résolution algébrique des équations (“Thoughts on the algebraic solving of equations”),[35] Joseph Louis Lagrange introduced a new method to solve equations of low degree.

This method works well for cubic and quartic equations, but Lagrange did not succeed in applying it to a quintic equation, because it requires solving a resolvent polynomial of degree at least six.[36][37][38] This is explained by the Abel–Ruffini theorem, which proves that such polynomials cannot be solved by radicals. Nevertheless, the modern methods for solving solvable quintic equations are mainly based on Lagrange’s method.[38]

In the case of cubic equations, Lagrange’s method gives the same solution as Cardano’s. By drawing attention to a geometrical problem that involves two cubes of different size Cardano explains in his book Ars Magna how he arrived at the idea of considering the unknown of the cubic equation as a sum of two other quantities. Lagrange’s method may also be applied directly to the general cubic equation (1), ax3 + bx2 + cx + d = 0, without using the reduction to the depressed cubic equation (2), t3 + pt + q = 0. Nevertheless, the computation is much easier with this reduced equation.

Suppose that x0, x1 and x2 are the roots of equation (1) or (2), and define ξ = −1/2 + 1/2√3i (a complex cube root of 1, i.e. a primitive third root of unity) which satisfies the relation ξ2 + ξ + 1 = 0. We now set

s_{0}=x_{0}+x_{1}+x_{2},\,
s_{1}=x_{0}+\zeta x_{1}+\zeta ^{2}x_{2},\,
s_{2}=x_{0}+\zeta ^{2}x_{1}+\zeta x_{2}.\,

This is the discrete Fourier transform of the roots: observe that while the coefficients of the polynomial are symmetric in the roots, in this formula an order has been chosen on the roots, so these are not symmetric in the roots. The roots may then be recovered from the three si by inverting the above linear transformation via the inverse discrete Fourier transform, giving

  x_{0}={\tfrac {1}{3}}(s_{0}+s_{1}+s_{2}),\,
x_{1}={\tfrac {1}{3}}(s_{0}+\zeta ^{2}s_{1}+\zeta s_{2}),\,
x_{2}={\tfrac {1}{3}}(s_{0}+\zeta s_{1}+\zeta ^{2}s_{2}).\,

The polynomial s0 is equal, by Vieta’s formulas, to b/a in case of equation (1) and to 0 in case of equation (2), so we only need to seek values for the other two.

 

即使已知s_0, s_1,  s_2x_0, x_1, x_2 的線性關係,也知 {\xi}^2 + \xi +1 =0 ,將 x_0, x_1, x_2s_0, s_1,  s_2 來表示亦需要許多計算!因此人們往往不願從頭來過,只想知道結果就好!!不過這樣就少了許多探索的樂趣了。難道使用『SymPy』能有什麼不同的嗎?終究也只是得到『答案』而已乎??

pi@raspberrypi:~ python3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)  [GCC 4.9.1] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from sympy import * >>> x0, x1, x2, s0, s1, s2, ζ = symbols('x0, x1, x2, s0, s1, s2, ζ') >>> init_printing() >>> R1 = Eq(s0, x0 + x1 + x2) >>> R2 = Eq(s1, x0 + ζ*x1 + ζ**2 * x2) >>> R3 = Eq(s2, x0 + ζ**2 * x1 + ζ*x2) >>> R1 s₀ = x₀ + x₁ + x₂ >>> R2                      2 s₁ = x₀ + x₁⋅ζ + x₂⋅ζ  >>> R3               2        s₂ = x₀ + x₁⋅ζ  + x₂⋅ζ >>> solve([R1,R2,R3],[x0,x1,x2]) ⎧        2                                                                     ⎪    s₀⋅ζ  + s₀⋅ζ - s₁ - s₂      -s₀⋅ζ - s₁ + s₂⋅ζ + s₂      -s₀⋅ζ + s₁⋅ζ + s₁ ⎨x₀: ──────────────────────, x₁: ──────────────────────, x₂: ───────────────── ⎪           2                          ⎛ 2        ⎞                ⎛ 2         ⎩          ζ  + ζ - 2                ζ⋅⎝ζ  + ζ - 2⎠              ζ⋅⎝ζ  + ζ - 2       ⎫  - s₂⎪ ─────⎬ ⎞    ⎪ ⎠    ⎭ >>>  </pre>    <span style="color: #003300;">概念之表達需要練習,由是才易掌握概念的內涵。不同的觀察點,或能設想前人所未想或尚未竟之處。假使嘗試卻為複雜運算所阻,恐是誤解了工具的發明及其使用之目的。因此『SymPy』無法代替你的『思考』也。事實上就算你告知『SymPy』{\xi}^2 + \xi +1 =0有這一關係式,它也不會『自動』幫你化簡成那一表達式矣。要是只想知道答案,幹嘛那麼麻煩耶??!!</span> <pre class="lang:python decode:true">>>> a, b, c, d, x = symbols('a, b, c, d, x') >>> solve(a*x**3 + b*x**2 + c*x + d , x)  [-(-3*c/a + b**2/a**2)/(3*(sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)) - (sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)/3 - b/(3*a), -(-3*c/a + b**2/a**2)/(3*(-1/2 - sqrt(3)*I/2)*(sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)/3 - b/(3*a), -(-3*c/a + b**2/a**2)/(3*(-1/2 + sqrt(3)*I/2)*(sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)) - (-1/2 + sqrt(3)*I/2)*(sqrt(-4*(-3*c/a + b**2/a**2)**3 + (27*d/a - 9*b*c/a**2 + 2*b**3/a**3)**2)/2 + 27*d/(2*a) - 9*b*c/(2*a**2) + b**3/a**3)**(1/3)/3 - b/(3*a)] </pre>    <span style="color: #003300;">所以打算跟隨詞條文本者</span>  <span style="color: #808080;">The polynomials <span class="texhtml"><i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span> are not <a style="color: #808080;" title="Symmetric polynomial" href="https://en.wikipedia.org/wiki/Symmetric_polynomial">symmetric functions</a> of the roots: <span class="texhtml"><i>s</i><sub>0</sub></span> is invariant, while the two non-trivial <a style="color: #808080;" title="Cyclic permutation" href="https://en.wikipedia.org/wiki/Cyclic_permutation">cyclic permutations</a> of the roots send <span class="texhtml"><i>s</i><sub>1</sub></span> to <span class="texhtml"><i>ξ</i> <i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span> to <span class="texhtml"><i>ξ</i><sup>2</sup><i>s</i><sub>2</sub></span>, or <span class="texhtml"><i>s</i><sub>1</sub></span> to <span class="texhtml"><i>ξ</i><sup>2</sup><i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span> to <span class="texhtml"><i>ξ</i> <i>s</i><sub>2</sub></span> (depending on which permutation), while transposing <span class="texhtml"><i>x</i><sub>1</sub></span> and <span class="texhtml"><i>x</i><sub>2</sub></span> switches <span class="texhtml"><i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span>; other transpositions switch these roots and multiply them by a power of <span class="texhtml"><i>ξ</i></span>.</span>  <span style="color: #808080;">Thus <span class="texhtml"><i>s</i><sub>1</sub><sup>3</sup></span>, <span class="texhtml"><i>s</i><sub>2</sub><sup>3</sup></span> and <span class="texhtml"><i>s</i><sub>1</sub><i>s</i><sub>2</sub></span> are left invariant by the cyclic permutations of the roots, which multiply them by <span class="texhtml"><i>ξ</i><sup>3</sup> = 1</span>. Also <span class="texhtml"><i>s</i><sub>1</sub><i>s</i><sub>2</sub></span> and <span class="texhtml"><i>s</i><sub>1</sub><sup>3</sup> + <i>s</i><sub>2</sub><sup>3</sup></span> are left invariant by the transposition of <span class="texhtml"><i>x</i><sub>1</sub></span> and <span class="texhtml"><i>x</i><sub>2</sub></span> which exchanges <span class="texhtml"><i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span>. As the <a style="color: #808080;" title="Permutation group" href="https://en.wikipedia.org/wiki/Permutation_group">permutation group</a> <span class="texhtml"><i>S</i><sub>3</sub></span> of the roots is generated by these permutations, it follows that <span class="texhtml"><i>s</i><sub>1</sub><sup>3</sup> + <i>s</i><sub>2</sub><sup>3</sup></span> and <span class="texhtml"><i>s</i><sub>1</sub><i>s</i><sub>2</sub></span> are <a style="color: #808080;" title="Symmetric polynomial" href="https://en.wikipedia.org/wiki/Symmetric_polynomial">symmetric functions</a> of the roots and may thus be written as polynomials in the <a style="color: #808080;" title="Elementary symmetric polynomial" href="https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial">elementary symmetric polynomials</a> and thus as <a style="color: #808080;" title="Rational function" href="https://en.wikipedia.org/wiki/Rational_function">rational functions</a> of the coefficients of the equation. Let <span class="texhtml"><i>s</i><sub>1</sub><sup>3</sup> + <i>s</i><sub>2</sub><sup>3</sup> = <i>A</i></span> and <span class="texhtml"><i>s</i><sub>1</sub><i>s</i><sub>2</sub> = <i>B</i></span> in these expressions, which will be explicitly computed below.</span>  <span style="color: #808080;">We have that <span class="texhtml"><i>s</i><sub>1</sub><sup>3</sup></span> and <span class="texhtml"><i>s</i><sub>2</sub><sup>3</sup></span> are the two roots of the quadratic equation <span class="texhtml"><i>z</i><sup>2</sup> − <i>Az</i> + <i>B</i><sup>3</sup> = 0</span>. Thus the resolution of the equation may be finished exactly as described for Cardano's method, with <span class="texhtml"><i>s</i><sub>1</sub></span> and <span class="texhtml"><i>s</i><sub>2</sub></span> in place of <span class="texhtml mvar">u</span> and <span class="texhtml mvar">v</span>.</span> <h4><span id="Computation_of_A_and_B" class="mw-headline" style="color: #808080;">Computation of <i>A</i> and <i>B</i></span></h4> <span style="color: #808080;">Setting <span class="texhtml"><i>E</i><sub>1</sub> = <i>x</i><sub>0</sub> + <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub></span>, <span class="texhtml"><i>E</i><sub>2</sub> = <i>x</i><sub>0</sub> <i>x</i><sub>1</sub> + <i>x</i><sub>1</sub> <i>x</i><sub>2</sub> + <i>x</i><sub>2</sub> <i>x</i><sub>0</sub></span> and <span class="texhtml"><i>E</i><sub>3</sub> = <i>x</i><sub>0</sub> <i>x</i><sub>1</sub> <i>x</i><sub>2</sub></span>, the elementary symmetric polynomials, we have, using that <span class="texhtml"><i>ξ</i><sup>3</sup> = 1</span>:</span>  <dl><dd><span style="color: #808080;"><img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d73a441c6318997f243434a988e09076a4680dcc" alt="{\displaystyle s_{1}^{3}=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+3\zeta (x_{0}^{2}x_{1}+x_{1}^{2}x_{2}+x_{2}^{2}x_{0})+3\zeta ^{2}(x_{0}x_{1}^{2}+x_{1}x_{2}^{2}+x_{2}x_{0}^{2})+6x_{0}x_{1}x_{2}\,.}" /></span></dd></dl><span style="color: #808080;">The expression for <span class="texhtml"><i>s</i><sub>2</sub><sup>3</sup></span> is the same with <span class="texhtml"><i>ξ</i></span> and <span class="texhtml"><i>ξ</i><sup>2</sup></span> exchanged. Thus, using <span class="texhtml"><i>ξ</i><sup>2</sup> + <i>ξ</i> = −1</span> we get</span>  <dl><dd><span style="color: #808080;"><img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0080e5f1ab617c00e45ef0f477487e2c2d192c0" alt="A=s_{1}^{3}+s_{2}^{3}=2(x_{0}^{3}+x_{1}^{3}+x_{2}^{3})-3(x_{0}^{2}x_{1}+x_{1}^{2}x_{2}+x_{2}^{2}x_{0}+x_{0}x_{1}^{2}+x_{1}x_{2}^{2}+x_{2}x_{0}^{2})+12x_{0}x_{1}x_{2}\,," /></span></dd></dl><span style="color: #808080;">and a straightforward computation gives</span>  <dl><dd><span style="color: #808080;"><img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c3992a40096a19b340bbb1d25cc640f7da45489" alt="A=s_{1}^{3}+s_{2}^{3}=2E_{1}^{3}-9E_{1}E_{2}+27E_{3}\,." /></span></dd></dl><span style="color: #808080;">Similarly we have</span>  <dl><dd><span style="color: #808080;"><img class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/872816595c1e986b7c91cf46fbb8cad5aea1c540" alt="B=s_{1}s_{2}=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+(\zeta +\zeta ^{2})(x_{0}x_{1}+x_{1}x_{2}+x_{2}x_{0})=E_{1}^{2}-3E_{2}\,." /></span></dd></dl><span style="color: #808080;">When solving equation <b>(</b><a style="color: #808080;" href="https://en.wikipedia.org/wiki/Cubic_function#math_1">1</a><b>)</b> we have <span class="texhtml"><i>E</i><sub>1</sub> = −<span class="sfrac nowrap"><i>b</i><span class="visualhide">/</span><i>a</i></span></span>, <span class="texhtml"><i>E</i><sub>2</sub> = <span class="sfrac nowrap"><i>c</i><span class="visualhide">/</span><i>a</i></span></span> and <span class="texhtml"><i>E</i><sub>3</sub> = −<span class="sfrac nowrap"><i>d</i><span class="visualhide">/</span><i>a</i></span></span>. With equation <b>(</b><a style="color: #808080;" href="https://en.wikipedia.org/wiki/Cubic_function#math_2">2</a><b>)</b>, we have <span class="texhtml"><i>E</i><sub>1</sub> = 0</span>, <span class="texhtml"><i>E</i><sub>2</sub> = <i>p</i></span> and <span class="texhtml"><i>E</i><sub>3</sub> = −<i>q</i></span> and thus <span class="texhtml"><i>A</i> = −27<i>q</i></span> and <span class="texhtml"><i>B</i> = −3<i>p</i></span>.</span>  <span style="color: #808080;">Note that with equation <b>(</b><a style="color: #808080;" href="https://en.wikipedia.org/wiki/Cubic_function#math_2">2</a><b>)</b>, we have <span class="texhtml"><i>x</i><sub>0</sub> = <span class="sfrac nowrap">1<span class="visualhide">/</span>3</span>(<i>s</i><sub>1</sub> + <i>s</i><sub>2</sub>)</span> and <span class="texhtml"><i>s</i><sub>1</sub><i>s</i><sub>2</sub> = −3<i>p</i></span>, while in Cardano's method we have set <span class="texhtml"><i>x</i><sub>0</sub> = <i>u</i> + <i>v</i></span> and <span class="texhtml"><i>uv</i> = −<span class="sfrac nowrap">1<span class="visualhide">/</span>3</span><i>p</i></span>. Thus we have, up to the exchange of <span class="texhtml mvar">u</span> and <span class="texhtml mvar">v</span>, <span class="texhtml"><i>s</i><sub>1</sub> = 3<i>u</i></span> and <span class="texhtml"><i>s</i><sub>2</sub> = 3<i>v</i></span> . In other words, in this case, Cardano's method and Lagrange's method compute exactly the same things, up to a factor of three in the auxiliary variables, the main difference being that Lagrange's method explains why these auxiliary variables appear in the problem.</span>     <span style="color: #003300;">還是得自己動動手呢!!??</span> <pre class="lang:python decode:true">pi@raspberrypi:~ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from sympy import *
>>> x0, x1, x2, ζ = symbols('x0, x1, x2, ζ')
>>> s0 = x0 + x1 + x2
>>> s1 = x0 + ζ*x1 + ζ**2 * x2
>>> s2 = x0 + ζ**2 * x1 + ζ*x2

>>> (s1**2).expand()
x0**2 + 2*x0*x1*ζ + 2*x0*x2*ζ**2 + x1**2*ζ**2 + 2*x1*x2*ζ**3 + x2**2*ζ**4

>>> collect(x0**2 + 2*x0*x1*ζ + 2*x0*x2*ζ**2 + x1**2*ζ**2 + 2*x1*x2 + x2**2*ζ, ζ)

x0**2 + 2*x1*x2 + ζ**2*(2*x0*x2 + x1**2) + ζ*(2*x0*x1 + x2**2)

>>> (s1**3).expand()
x0**3 + 3*x0**2*x1*ζ + 3*x0**2*x2*ζ**2 + 3*x0*x1**2*ζ**2 + 6*x0*x1*x2*ζ**3 + 3*x0*x2**2*ζ**4 + x1**3*ζ**3 + 3*x1**2*x2*ζ**4 + 3*x1*x2**2*ζ**5 + x2**3*ζ**6

>>> collect(x0**3 + 3*x0**2*x1*ζ + 3*x0**2*x2*ζ**2 + 3*x0*x1**2*ζ**2 + 6*x0*x1*x2 + 3*x0*x2**2*ζ + x1**3 + 3*x1**2*x2*ζ + 3*x1*x2**2*ζ**2 + x2**3, ζ)

x0**3 + 6*x0*x1*x2 + x1**3 + x2**3 + ζ**2*(3*x0**2*x2 + 3*x0*x1**2 + 3*x1*x2**2) + ζ*(3*x0**2*x1 + 3*x0*x2**2 + 3*x1**2*x2)

>>> (s1*s2).expand()
x0**2 + x0*x1*ζ**2 + x0*x1*ζ + x0*x2*ζ**2 + x0*x2*ζ + x1**2*ζ**3 + x1*x2*ζ**4 + x1*x2*ζ**2 + x2**2*ζ**3

>>> collect(x0**2 + x0*x1*ζ**2 + x0*x1*ζ + x0*x2*ζ**2 + x0*x2*ζ + x1**2 + x1*x2*ζ + x1*x2*ζ**2 + x2**2, ζ)

x0**2 + x1**2 + x2**2 + ζ**2*(x0*x1 + x0*x2 + x1*x2) + ζ*(x0*x1 + x0*x2 + x1*x2)
>>> 

 

如是在清楚通熟『四次函數』

Quartic function

In algebra, a quartic function is a function of the form

f(x)=ax^{4}+bx^{3}+cx^{2}+dx+e,

where a is nonzero, which is defined by a polynomial of degree four, called quartic polynomial.

Sometimes the term biquadratic is used instead of quartic, but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form

f(x)=ax^{4}+cx^{2}+e.

A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form

ax^{4}+bx^{3}+cx^{2}+dx+e=0,

where a ≠ 0.

The derivative of a quartic function is a cubic function.

Since a quartic function is defined by a polynomial of even degree, it has the same infinite limit when the argument goes to positive or negative infinity. If a is positive, then the function increases to positive infinity at both ends; and thus the function has a global minimum. Likewise, if a is negative, it decreases to negative infinity and has a global maximum. In both cases it may or may not have another local maximum and another local minimum.

The degree four (quartic case) is the highest degree such that every polynomial equation can be solved by radicals.

Solving by Lagrange resolvent

The symmetric group S4 on four elements has the Klein four-group as a normal subgroup. This suggests using a resolvent cubic whose roots may be variously described as a discrete Fourier transform or a Hadamard matrix transform of the roots; see Lagrange resolvents for the general method. Denote by xi, for i from 0 to 3, the four roots of x4 + bx3 + cx2 + dx + e. If we set

{\begin{aligned}s_{0}&={\tfrac {1}{2}}(x_{0}+x_{1}+x_{2}+x_{3}),\\s_{1}&={\tfrac {1}{2}}(x_{0}-x_{1}+x_{2}-x_{3}),\\s_{2}&={\tfrac {1}{2}}(x_{0}+x_{1}-x_{2}-x_{3}),\\s_{3}&={\tfrac {1}{2}}(x_{0}-x_{1}-x_{2}+x_{3}),\end{aligned}}

then since the transformation is an involution we may express the roots in terms of the four si in exactly the same way. Since we know the value s0 = −b/2, we only need the values for s1, s2 and s3. These are the roots of the polynomial

{\displaystyle (s^{2}-{s_{1}}^{2})(s^{2}-{s_{2}}^{2})(s^{2}-{s_{3}}^{2}).}

Substituting the si by their values in term of the xi, this polynomial may be expanded in a polynomial in s whose coefficients are symmetric polynomials in the xi. By the fundamental theorem of symmetric polynomials, these coefficients may be expressed as polynomials in the coefficients of the monic quartic. If, for simplification, we suppose that the quartic is depressed, that is b = 0, this results in the polynomial

{\displaystyle {s}^{6}+2c\,{s}^{4}+({c}^{2}-4e)\,{s}^{2}-{d}^{2}}
     
 
(3)

This polynomial is of degree six, but only of degree three in s2, and so the corresponding equation is solvable by the method described in the article about cubic function. By substituting the roots in the expression of the xi in terms of the si, we obtain expression for the roots. In fact we obtain, apparently, several expressions, depending on the numbering of the roots of the cubic polynomial and of the signs given to their square roots. All these different expressions may be deduced from one of them by simply changing the numbering of the xi.

These expressions are unnecessarily complicated, involving the cubic roots of unity, which can be avoided as follows. If s is any non-zero root of (3), and if we set

{\displaystyle {\begin{aligned}F_{1}(x)&={x}^{2}+sx+{\frac {c}{2}}+{\frac {s^{2}}{2}}-{\frac {d}{2s}}\\F_{2}(x)&={x}^{2}-sx+{\frac {c}{2}}+{\frac {s^{2}}{2}}+{\frac {d}{2s}}\end{aligned}}}

then

{\displaystyle F_{1}(x)\times F_{2}(x)=x^{4}+cx^{2}+dx+e.}

We therefore can solve the quartic by solving for s and then solving for the roots of the two factors using the quadratic formula.

Note that this gives exactly the same formula for the roots as the one provided by Descartes’ method.

 

之後,或能欣賞阿貝爾和伽羅瓦優美的

可解群

數學的歷史中,群論原本起源於對五次方程及更高次方程無一般的公式解之證明的找尋,最終隨著伽羅瓦理論的提出而確立。可解群的概念產生於描述其根可以只用根式(平方根、立方根等等及其和與積)表示的多項式所對應的自同構群所擁有的性質。

一個群被稱為可解的,若它擁有一個其商群皆為阿貝爾群正規列。或者等價地說,若其降正規列

G ▹ G ( 1 ) ▹ G ( 2 ) ▹ ⋯ , G\triangleright G^{{(1)}}\triangleright G^{{(2)}}\triangleright \cdots ,

之中,每一個子群都會是前一個的導群,且最後一個為G的當然子群{1}。上述兩個定義是等價的,對一個群HH正規子群N,其商群H/N為可交換的若且唯若N包含著H(1)

對於有限群,有一個等價的定義為:一可解群為一有著其商群皆為質數循環群合成列的群。此一定義會等價是因為每一個簡單阿貝爾群都是有質數階的循環群。若爾當-赫爾德定理表示若一個合成列有此性質,則其循環群即會對應到某個體上的n個根。但此一定義的等價性並不必然於無限群中亦會成立:例如,因為每一個在加法下的整數群Z的非當然子群皆同構Z本身,它不會有合成列,但是其有著唯一同構於Z的商群之正規列{0,Z},證明了其確實是可解的。

喬治·波里亞的格言「若有一個你無法算出的問題,則會有的你可以算出的較簡單的問題」相一致的,可解群通常在簡化有關一複雜的群的推測至一系列有著簡單結構-阿貝爾群的群的推測有著很有用的功用。

 

理論吧!!!

 

 

 

 

 

 

 

 

 

 

 

 

 

光的世界︰派生科學計算二‧中

照說一元二次方程式 x^2 + px + q = 0 用『配方法』來求解,應是自然順理成章之事。若從『發現』之『邏輯』來考察這一『思路』莫非源於 {(x - \Box)}^2 = {\bigcirc}^2 的『形式』之『啟發』耶?如果由二次式函數 f(x) = x^2 + px +q 之觀點來看,難到不能平移『座標系』 x = y + \alpha ,使之簡化為 y \times (y - \Box) 之『形式』乎??一個簡單的例子 x^2 - 4x + 3 = 0 或可說明,如此尋找 \alpha 以求簡化方程式的求解,實無攸利也!那個 \alpha 還得滿足原方程式 {\alpha}^2 - 4 \alpha + 3 = 0 矣!!

 

Figure q_0

Fig 1 : f(x) = x^2 - 4x +3 = (x - 1) \times (x - 3)

 

Figure q_1

Fig 2 : f(y) = y^2 - 1 = (y - 1) \times (y + 1)

 

Figure q_2

Fig 3 : f(y) = y^2 - 2y  = y \times (y - 2)

 

pi@raspberrypi:~ python3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)  [GCC 4.9.1] on linux Type "help", "copyright", "credits" or "license" for more information.  >>> from sympy import * >>> x, p, q, α, β, r1, r2 = symbols('x, p, q, α, β, r1, r2') >>> 方程式 = x**2 - 4*x + 3  # Fig 1 >>> plot(方程式) <sympy.plotting.plot.Plot object at 0x75cbba90>  >>> y, α = symbols('y, α') >>> 方程式.subs(x, y + α) -4*y - 4*α + (y + α)**2 + 3 >>> init_printing() >>> 方程式.subs(x, y + α)                     2     -4⋅y - 4⋅α + (y + α)  + 3 >>> 係數式 = collect( (方程式.subs(x, y + α)).expand(), y) >>> 係數式.coeff(y,1) 2⋅α - 4 >>> 係數式.coeff(y,0)  2           α  - 4⋅α + 3  >>> factor(方程式.subs(x, y + 2)) (y - 1)⋅(y + 1)  >>> factor(方程式.subs(x, y + 1)) y⋅(y - 2)  # Fig 2 >>> plot((y - 1)*(y + 1))                    Plot object containing:                    [0]: cartesian line: (y - 1)*(y + 1) for y over (-10.0, 10.0)  # Fig 3 >>> plot(y*(y -2))                 Plot object containing:                 [0]: cartesian line: y*(y - 2) for y over (-10.0, 10.0)  >>> 二次式 = x**2 + p*x + q >>> 常數項 = collect( (二次式.subs(x, y + α)).expand(), y).coeff(y,0) >>> 常數項  2 p⋅α + q + α  >>>  </pre>    <span style="color: #003300;">此正是拉格朗日能以『單位圓』x^2 = 1的兩個『根』x = \pm 1探索二次方程式x^2 + px + q = (x - \alpha)(x -\beta)的『預解式』為</span>r_1 = \alpha + \betar_2 = \alpha - \beta<span style="color: #003300;">不凡創見也。而且及於『三次式』、『四次式』…… 之『系統化』論述,當然得入『<a style="color: #003300;" href="https://zh.wikipedia.org/zh-tw/%E7%BE%A4%E8%AE%BA">群論</a>』歷史的殿堂吧︰</span> <h2><span id=".E5.8E.86.E5.8F.B2" class="mw-headline" style="color: #808080;">歷史</span></h2> <span style="color: #808080;">群論在歷史上主要有三個來源:<a style="color: #808080;" title="數論" href="https://zh.wikipedia.org/wiki/%E6%95%B0%E8%AE%BA">數論</a>,<a style="color: #808080;" title="代數方程" href="https://zh.wikipedia.org/wiki/%E4%BB%A3%E6%95%B0%E6%96%B9%E7%A8%8B">代數方程</a>理論和<a style="color: #808080;" title="幾何學" href="https://zh.wikipedia.org/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6">幾何學</a>。數論中出現的對群的研究始於<a class="mw-redirect" style="color: #808080;" title="萊昂哈德·歐拉" href="https://zh.wikipedia.org/wiki/%E8%8E%B1%E6%98%82%E5%93%88%E5%BE%B7%C2%B7%E6%AC%A7%E6%8B%89">萊昂哈德·歐拉</a>,之後由<a class="mw-redirect" style="color: #808080;" title="卡爾·弗里德里希·高斯" href="https://zh.wikipedia.org/wiki/%E5%8D%A1%E5%B0%94%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E9%87%8C%E5%B8%8C%C2%B7%E9%AB%98%E6%96%AF">卡爾·弗里德里希 ·高斯</a>在對<a class="mw-redirect" style="color: #808080;" title="模算術" href="https://zh.wikipedia.org/wiki/%E6%A8%A1%E7%AE%97%E6%9C%AF">模算術</a>和與<a style="color: #808080;" title="二次體" href="https://zh.wikipedia.org/wiki/%E4%BA%8C%E6%AC%A1%E5%9F%9F">二次體</a>相關的乘法和加法的研究中進行了發展 。群論的概念在<a style="color: #808080;" title="代數數論" href="https://zh.wikipedia.org/wiki/%E4%BB%A3%E6%95%B8%E6%95%B8%E8%AB%96">代數數論</a>中首先被隱含地使用,後來才顯式地運用它們。</span>  <span style="color: #808080;">關於<a style="color: #808080;" title="置換群" href="https://zh.wikipedia.org/wiki/%E7%BD%AE%E6%8D%A2%E7%BE%A4">置換群</a>的早期結果出現在<a style="color: #808080;" title="約瑟夫·拉格朗日" href="https://zh.wikipedia.org/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%C2%B7%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5">約瑟夫·拉格朗日</a>、<a class="new" style="color: #808080;" title="保羅·魯非尼(頁面不存在)" href="https://zh.wikipedia.org/w/index.php?title=%E4%BF%9D%E7%BD%97%C2%B7%E9%B2%81%E9%9D%9E%E5%B0%BC&action=edit&redlink=1">保羅·魯非尼</a>(Paolo Ruffini)和<a style="color: #808080;" title="尼爾斯·阿貝爾" href="https://zh.wikipedia.org/wiki/%E5%B0%BC%E5%B0%94%E6%96%AF%C2%B7%E9%98%BF%E8%B4%9D%E5%B0%94">尼爾斯·阿貝爾</a>等人關於高次方程一般解的工作中。1830年,<a style="color: #808080;" title="埃瓦里斯特·伽羅瓦" href="https://zh.wikipedia.org/wiki/%E5%9F%83%E7%93%A6%E9%87%8C%E6%96%AF%E7%89%B9%C2%B7%E4%BC%BD%E7%BD%97%E7%93%A6">埃瓦里斯特·伽羅瓦</a>第一個用群的觀點來確定<a class="mw-redirect" style="color: #808080;" title="多項式方程" href="https://zh.wikipedia.org/wiki/%E5%A4%9A%E9%A1%B9%E5%BC%8F%E6%96%B9%E7%A8%8B">多項式方程</a>的可解性。伽羅瓦首次使用了術語「群」,並在新生的群的理論與<a style="color: #808080;" title="域論" href="https://zh.wikipedia.org/wiki/%E5%9F%9F%E8%AB%96">體論</a>之間建立起了聯繫。這套理論現在被稱為<a style="color: #808080;" title="伽羅瓦理論" href="https://zh.wikipedia.org/wiki/%E4%BC%BD%E7%BE%85%E7%93%A6%E7%90%86%E8%AB%96">伽羅瓦理論</a>。<a class="mw-redirect" style="color: #808080;" title="阿瑟·凱萊" href="https://zh.wikipedia.org/wiki/%E9%98%BF%E7%91%9F%C2%B7%E5%87%AF%E8%8E%B1">阿瑟·凱萊</a>和<a style="color: #808080;" title="奧古斯丁·路易·柯西" href="https://zh.wikipedia.org/wiki/%E5%A5%A7%E5%8F%A4%E6%96%AF%E4%B8%81%C2%B7%E8%B7%AF%E6%98%93%C2%B7%E6%9F%AF%E8%A5%BF">奧古斯丁·路易·柯西</a>進一步發展了這些研究,創立了<a style="color: #808080;" title="置換群" href="https://zh.wikipedia.org/wiki/%E7%BD%AE%E6%8D%A2%E7%BE%A4">置換群</a>理論。</span>  <span style="color: #808080;">群論的第三個主要歷史淵源來自幾何。群論在<a style="color: #808080;" title="射影幾何" href="https://zh.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E5%87%A0%E4%BD%95">射影幾何</a>中首次顯示出它的重要性,並在之後的<a class="mw-redirect" style="color: #808080;" title="非歐幾何" href="https://zh.wikipedia.org/wiki/%E9%9D%9E%E6%AC%A7%E5%87%A0%E4%BD%95">非歐幾何</a>中起到了作用。<a style="color: #808080;" title="菲利克斯·克萊因" href="https://zh.wikipedia.org/wiki/%E8%8F%B2%E5%88%A9%E5%85%8B%E6%96%AF%C2%B7%E5%85%8B%E8%8E%B1%E5%9B%A0">菲利克斯·克萊因</a>用群論的觀點,在不同的幾何學(如<a class="mw-redirect" style="color: #808080;" title="歐幾里德幾何" href="https://zh.wikipedia.org/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%B7%E5%87%A0%E4%BD%95">歐幾里德幾何</a>、<a style="color: #808080;" title="雙曲幾何" href="https://zh.wikipedia.org/wiki/%E5%8F%8C%E6%9B%B2%E5%87%A0%E4%BD%95">雙曲幾何</a>、<a style="color: #808080;" title="射影幾何" href="https://zh.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E5%87%A0%E4%BD%95">射影幾何</a>)之間建立了聯繫,即<a style="color: #808080;" title="愛爾蘭根綱領" href="https://zh.wikipedia.org/wiki/%E7%88%B1%E5%B0%94%E5%85%B0%E6%A0%B9%E7%BA%B2%E9%A2%86">愛爾蘭根綱領</a>。1884年,<a style="color: #808080;" title="索菲斯·李" href="https://zh.wikipedia.org/wiki/%E7%B4%A2%E8%8F%B2%E6%96%AF%C2%B7%E6%9D%8E">索菲斯·李</a>開始研究<a style="color: #808080;" title="數學分析" href="https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%88%86%E6%9E%90">分析學</a>問題中出現的群(現在稱為<a style="color: #808080;" title="李群" href="https://zh.wikipedia.org/wiki/%E6%9D%8E%E7%BE%A4">李群</a>)。</span>  <span style="color: #808080;">屬於不同領域的來源導致了群的不同記法。群的理論從約1880年起開始統一。在那之後,群論的影響一直在擴大,在20世紀早期促進了<a style="color: #808080;" title="抽象代數" href="https://zh.wikipedia.org/wiki/%E6%8A%BD%E8%B1%A1%E4%BB%A3%E6%95%B0">抽象代數</a>、<a style="color: #808080;" title="表示論" href="https://zh.wikipedia.org/wiki/%E8%A1%A8%E7%A4%BA%E8%AE%BA">表示論</a>和其他許多有影響力的子領域的建立。<a style="color: #808080;" title="有限單群分類" href="https://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%96%AE%E7%BE%A4%E5%88%86%E9%A1%9E">有限單純群分類</a>是20世紀中葉一項規模龐大的工作,對一切的<a style="color: #808080;" title="有限集合" href="https://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E9%9B%86%E5%90%88">有限</a><a style="color: #808080;" title="單純群" href="https://zh.wikipedia.org/wiki/%E5%8D%95%E7%BE%A4">單純群</a>進行了分類。</span>     假使從『N次方程式』的『係數』,與其『根』之『因子式』的『展開式』作觀察,該『係數』都是整體『根』的『對稱』函數。因此r_2 = \alpha - \beta,若是『兩根交換』 \beta - \alpha後等於- r_2,故為『不對稱』也。不過要是能將\alpha - \beta行使『對稱化』{(\alpha - \beta)}^2 = {(\alpha + \beta)}^2 - 4 \alpha \beta,那麼r_2也就可用方程式之『係數』來表達,如是這『一元二次』方程式化成那『二元一次』聯立方程式,此解答呼之欲出也\alpha = \frac{r_1 + r_2}{2}\beta = \frac{r_1 - r_2}{2}   故稱其為『break the symmetry』打破對稱耶!!設想『紙筆計算』的年代,無法以工具『符號運算』,怎麼『想來』一事,誰知誰曉呢??當真是偶然乎☆☆  <div class="wc-shortcodes-row wc-shortcodes-item wc-shortcodes-clearfix"><div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-one-half wc-shortcodes-column-first ">  <a href="http://www.freesandal.org/wp-content/uploads/PicassoGuernica.jpg"><img class="alignnone size-full wp-image-17405" src="http://www.freesandal.org/wp-content/uploads/PicassoGuernica.jpg" alt="PicassoGuernica" width="900" height="522" /></a>  <span style="color: #808080;"><strong>畢卡索名作《格爾尼卡》</strong></span>  <a href="http://www.freesandal.org/wp-content/uploads/250px-Niels_Henrik_Abel_detail.jpeg"><img class="alignnone size-full wp-image-17397" src="http://www.freesandal.org/wp-content/uploads/250px-Niels_Henrik_Abel_detail.jpeg" alt="250px-Niels_Henrik_Abel_(detail)" width="250" height="304" /></a>  <span style="color: #808080;"><strong>群論啟始者</strong></span>  <a href="http://www.freesandal.org/wp-content/uploads/250px-Evariste_galois.jpg"><img class="alignnone size-full wp-image-17396" src="http://www.freesandal.org/wp-content/uploads/250px-Evariste_galois.jpg" alt="250px-Evariste_galois" width="250" height="323" /></a>  <span style="color: #808080;"><strong>伽羅瓦理論創造者</strong></span>  <a href="http://www.freesandal.org/wp-content/uploads/220px-Roots_chart.png"><img class="alignnone size-full wp-image-17393" src="http://www.freesandal.org/wp-content/uploads/220px-Roots_chart.png" alt="220px-Roots_chart" width="220" height="246" /></a>  <a href="http://www.freesandal.org/wp-content/uploads/220px-NegativeOne4Root.svg.png"><img class="alignnone size-full wp-image-17399" src="http://www.freesandal.org/wp-content/uploads/220px-NegativeOne4Root.svg.png" alt="220px-NegativeOne4Root.svg" width="220" height="220" /></a>\sqrt[4]{-1}之根  <a href="http://www.freesandal.org/wp-content/uploads/220px-NegativeOne3Root.svg.png"><img class="alignnone size-full wp-image-17392" src="http://www.freesandal.org/wp-content/uploads/220px-NegativeOne3Root.svg.png" alt="220px-NegativeOne3Root.svg" width="220" height="220" /></a>\sqrt[3]{-1}之根  <a href="http://www.freesandal.org/wp-content/uploads/220px-The_graph_y__√x.png"><img class="alignnone size-full wp-image-17395" src="http://www.freesandal.org/wp-content/uploads/220px-The_graph_y__√x.png" alt="220px-The_graph_y_=_√x" width="220" height="125" /></a>\pm \sqrt{x}<a href="http://www.freesandal.org/wp-content/uploads/220px-The_graph_y__3√x.png"><img class="alignnone size-full wp-image-17394" src="http://www.freesandal.org/wp-content/uploads/220px-The_graph_y__3√x.png" alt="220px-The_graph_y_=_3√x" width="220" height="123" /></a>\sqrt[3]{x}</div><div class="wc-shortcodes-column wc-shortcodes-content wc-shortcodes-one-half wc-shortcodes-column-last ">  <span style="color: #808080;">概念的由來並非是無根之木突然結果,自有歷史的淵源,比較像鐵樹開花,基礎之因和境遇之緣的偶遇,彷彿一道閃光劃破天際,於是人們就知道了雷聲不遠的了。</span>  在『<strong>群論</strong>』 group theory 的歷史上,兩位重要的興起者,或許因為不同的環境因素,都發生不幸的早夭事件。其一是<strong>挪威</strong>數學家<strong>尼爾斯‧亨利克‧阿貝爾</strong> Niels Henrik Abel 生於一八零二年,一八二五年得到政府之資助,始得遊學柏林和巴黎。由於生前不得志,現實裡一直無法獲得教席而能專心的研究,最終在一八二九年,因肺結核在 挪威的弗魯蘭病世。就在死後兩天,家中收到了來自柏林的聘書。阿貝爾他以證明五次方程式『<strong>不可能</strong>』用『<strong>多次方根形式</strong>』\sqrt[n]{x}的一般解與對於『<strong>橢圓函數論</strong>』的研究而聞名於世。  <strong>法國</strong>著名的數學家<strong>埃瓦里斯特‧伽羅瓦</strong> Évariste Galois 生於一八一一年,當他還是十多歲的青年之時,他就已經發現了 N 次多項式可以用『<strong>根式解</strong>』的『<strong>充份必要條件</strong>』,這解決了長期困擾數學界的問題。伽羅瓦是第一個使用『<strong>群</strong>』 group 這一個術語的人。據聞他是一位激進的共和主義者,在路易‧菲利普復辟的時期被捕入獄。一八三二年時,伽羅瓦於出獄後,在一次幾乎自殺式的決鬥中喪了命,此事件的起因引起了多方各種的揣測??在今天他與阿貝爾並稱為『<strong>現代群論</strong>』的創始人 。  過去大數學家『<strong><a title="網路道荼、蓼" href="http://www.freesandal.org/?p=2944">歐拉</a></strong>』曾經著書立論,強調新的數學常常是起源於『<strong>觀察</strong>』與『<strong>實驗</strong>』。那麼伽羅瓦和阿貝爾他們又在觀察『<strong>什麼</strong>』的呢?假使思考 N 階『<strong>多項式</strong>』和 N 次『<strong>方程式</strong>』的『<strong>融會處</strong>』P(x) = \sum \limits_{i=0}^{i=n} c_i \cdot x^i = 0 \ =?= \prod \limits_{k=1}^{k=n} x - x_k,此處c_i是『<strong>有理數</strong>』,x_k是對應的『<strong>根</strong>』。  那麼當時果真已經證明了 N 次『<strong>方程式</strong>』就有 N 個解的嗎?其實並非如此,然而『<strong>三次</strong>』與『<strong>四次</strong>』方程式求解的一般的『<strong>方法</strong>』大概已經知道了。這又和『<strong>五次</strong>』方程式能不能求解有什麼關係的呢?就樣我們就從\sqrt{2}是『<strong>有理數</strong>』嗎開始,也許可以窺見一斑。為什麼說\sqrt{2}『<strong>不可能</strong>』是『<strong>有理數</strong>』的呢?因為它不可能『<strong>表達</strong>』成『<strong>有理數</strong>』的『<strong>形式</strong>』\frac{p}{q},一般約定的說此處p與q是整數而且互質。如果依據『<strong>歐幾里得</strong>』的證法,假使講一個有理數Q的『<strong>因式分解</strong>』,沒有任何一個『<strong>質因子次方</strong>』大於二 ── <span style="color: #808080;"><strong>其內沒有平方數</strong></span> ──,那麼這個\sqrt{Q}也就必然不會是『<strong>有理數</strong>』的了。這又是為什麼呢?因為假設\sqrt{Q} = \frac{p}{q},就可以得到p^2 = q^2 \cdot Q,然而因為p, q『<strong>互質</strong>』,所以p = k \cdot Q,而且k, q也『<strong>互質</strong>』,這樣又可以得到q^2 = k^2 \cdot Q,因此q = m Q  就一定是當然的了,於是p和q就有了共同『<strong>因子</strong>』Q,這卻產生了『<strong>假設矛盾</strong>』,因是之故,『<strong>歸謬</strong>』的得出了\sqrt{Q}不是『<strong>有理數</strong>』。那麼當我們談及P(x) = x^2 -2 = 0 = (x + \sqrt{2})(x - \sqrt{2})$ 時,這裡所說的『多項式』與『方程式』是一樣的嗎?它們的內在聯繫又是什麼的呢?