STEM 隨筆︰古典力學︰運動學【五‧三】

偉大的教育理念孔子的『因材施教』和『有教無類』。

學習文摘

子曰︰『吾志於學三十四十不或五十知天命六十耳順七十而從心所欲,不踰矩。』

子曰:『而時之,不亦乎?有自遠方,不亦乎?人不 知不慍,不亦君子乎?』

子曰:『不思不學。』

子曰:『由,女知之乎。知之為知之,不知為不知,是知也 。』

子曰:『不,不舉一不以三,則不復也 。』

─── 《樹莓一月記;

 

今天是勞動節

1866年第一國際日內瓦會議提出八小時工作制的口號。1886年5月1日,以美國芝加哥為中心,在美國舉行了約35萬人參加的大規模罷工和示威遊行[1],示威者要求改善勞動條件,實行八小時工作制。5月3日芝加哥政府出動警察鎮壓,並向人群開槍,打死了四個人,受傷者無數。這件事引起了整個芝加哥城沸騰,各工會決議於5月4日在乾草市廣場舉行群眾大會,約2,500名勞工,情緒雖然激昂,過程卻非常和平。一場突如其來的大雨將群眾淋得只剩兩百多人左右。正當勞工正要開始收場時,忽然開來一隊180名全副武裝的警察,將現場包圍起來,命令他們馬上解散。就在雙方在爭論的時候,突然發生了爆炸事件,場面頓時大亂。在黑暗中,警察向群眾開火,人們四處逃竄。 共計有十名勞工當場被打死,而警察也因彼此誤射而死傷慘重,這就是歷史上聞名的「乾草市廣場慘案」。

事後警察與新聞界一口咬定是無政府主義者丟的炸彈,要求處以極刑。因此,警方大事逮捕勞工領袖,最後以謀殺罪起訴八個人 。其中有五個人那晚根本沒到會場,只不過他們都是工會運動的活躍份子,警方正好藉機一網打盡。

審判最後,除了一人被判十五年外,二人被判無期徒刑外,五人都判死刑。 而其中的一位工運領袖奧古斯都.史比司(August Spies)在臨刑前說:「總有一天,我們的沈默 ,會遠比今天你們所要壓制的言論更為宏亮有力!」[2]。直到1889年,為了紀念這段壯烈的歷史,在巴黎舉行的第二國際成立大會通過決議,將5月1日定為國際勞工節,要求各國的勞工共同努力,為八小時工作日而奮鬥。今日有「乾草市場烈士紀念碑」(Haymarket Martyrs’ Monument)以紀念此事殉難者。

美國直到1935年羅斯福總統執政時,八小時工作制定於法律中才予以確立。

 

不知為何突然想起了那首

佚名詩

大地藏無盡,
勤勞資有生;
念哉斯意厚,
努力事春耕。

?一時覺得人積累數千年之科技與文明,竟還解決不了

公平合理

分配的問題??曾有所謂『勞』『心』與『勞』『力』貢獻大小之論!納罕要是天生我才必有用,如何談『用』『高』及『用』『低』理則呢!!

 

忽見窗外又『日上三竿』,努力『學而時習之,不亦說乎?』︰

Motion in space of a rigid body, and the inertia matrix

The scalar moments of inertia appear as elements in a matrix when a system of particles is assembled into a rigid body that moves in three-dimensional space. This inertia matrix appears in the calculation of the angular momentum, kinetic energy and resultant torque of the rigid system of particles.[3][4][5][6][25]

Let the system of particles Pi, i = 1, …, n be located at the coordinates ri with velocities vi relative to a fixed reference frame. For a (possibly moving) reference point R, the relative positions are

\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R}

and the (absolute) velocities are
\displaystyle \mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }
where ω is the angular velocity of the system, and VR is the velocity of R.

Angular momentum

Note that the cross product can be equivalently written as matrix multiplication by combining the first operand and the operator into a, skew-symmetric, matrix, [b], constructed from the components of b = (bx, by, bz):

\displaystyle {\begin{aligned}\mathbf {b} \times \mathbf {y} &\equiv \lbrack \mathbf {b} \rbrack \mathbf {y} \\\lbrack \mathbf {b} \rbrack &\equiv {\begin{bmatrix}0&-b_{z}&b_{y}\\b_{z}&0&-b_{x}\\-b_{y}&b_{x}&0\end{bmatrix}}.\end{aligned}}

The inertia matrix is constructed by considering the angular momentum, with the reference point R of the body chosen to be the centre of mass C:[3][6]
\displaystyle {\begin{aligned}\mathbf {L} &=\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\right)\\&=\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\right)\\&=\left(-\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}
where the terms containing VR (= C) sum to zero by the definition of centre of mass.

Then, the skew-symmetric matrix ri] obtained from the relative position vector Δri = riC, can be used to define,

\displaystyle \mathbf {L} =\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},

where IC defined by
\displaystyle \mathbf {I} _{\mathbf {C} }=-\left(\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right),
is the symmetric inertia matrix of the rigid system of particles measured relative to the centre of mass C.

Kinetic energy

The kinetic energy of a rigid system of particles can be formulated in terms of the centre of mass and a matrix of mass moments of inertia of the system. Let the system of particles Pi, i = 1, …,n be located at the coordinates ri with velocities vi, then the kinetic energy is[3][6]

\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}\right)={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\right),

where Δri = ri − C is the position vector of a particle relative to the centre of mass.

This equation expands to yield three terms

\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).

The second term in this equation is zero because C is the centre of mass. Introduce the skew-symmetric matrix ri] so the kinetic energy becomes
\displaystyle {\begin{aligned}E_{\text{K}}&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}
Thus, the kinetic energy of the rigid system of particles is given by
\displaystyle E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.
where IC is the inertia matrix relative to the centre of mass and M is the total mass.

Resultant torque

The inertia matrix appears in the application of Newton’s second law to a rigid assembly of particles. The resultant torque on this system is,[3][6]

\displaystyle {\boldsymbol {\tau }}=\left(\sum _{i=1}^{n}\left(\mathbf {r_{i}} -\mathbf {R} \right)\times m_{i}\mathbf {a} _{i}\right),

where ai is the acceleration of the particle Pi. The kinematics of a rigid body yields the formula for the acceleration of the particle Pi in terms of the position R and acceleration Ar of the reference point, as well as the angular velocity vector ω and angular acceleration vector α of the rigid system as,
\displaystyle \mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.
Use the centre of mass C as the reference point, and introduce the skew-symmetric matrix ri] = [riC] to represent the cross product (riC) ×, to obtain
\displaystyle {\boldsymbol {\tau }}=\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}
The calculation uses the identity
\displaystyle \Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,
obtained from the Jacobi identity for the triple cross product as shown in the proof below:

Thus, the resultant torque on the rigid system of particles is given by

\displaystyle {\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},

where IC is the inertia matrix relative to the centre of mass.

Parallel axis theorem

The inertia matrix of a body depends on the choice of the reference point. There is a useful relationship between the inertia matrix relative to the centre of mass C and the inertia matrix relative to another point R. This relationship is called the parallel axis theorem.[3][6]

Consider the inertia matrix IR obtained for a rigid system of particles measured relative to a reference point R, given by

\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}-\mathbf {R} \right]^{2}\right).

Let C be the centre of mass of the rigid system, then
\displaystyle \mathbf {R} =(\mathbf {R} -\mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,
where d is the vector from the centre of mass C to the reference point R. Use this equation to compute the inertia matrix,
\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\left(\mathbf {C} +\mathbf {d} \right)]^{2}\right)=-\left(\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}-\mathbf {C} \right)-\mathbf {d} ]^{2}\right).
Distribute over the cross product to obtain
\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)-\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.
The first term is the inertia matrix IC relative to the centre of mass. The second and third terms are zero by definition of the centre of mass C. And the last term is the total mass of the system multiplied by the square of the skew-symmetric matrix [d] constructed fromd.

The result is the parallel axis theorem,

\displaystyle \mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }-M[\mathbf {d} ]^{2},

where d is the vector from the centre of mass C to the reference point R.

Note on the minus sign: By using the skew symmetric matrix of position vectors relative to the reference point, the inertia matrix of each particle has the form m[r]2, which is similar to the mr2 that appears in planar movement. However, to make this to work out correctly a minus sign is needed. This minus sign can be absorbed into the term m[r]T[r], if desired, by using the skew-symmetry property of [r].

Scalar moment of inertia in a plane

The scalar moment of inertia, IL, of a body about a specified axis whose direction is specified by the unit vector and passes through the body at a point R is as follows:[6]

\displaystyle I_{L}=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,

where IR is the moment of inertia matrix of the system relative to the reference point R, and ri] is the skew symmetric matrix obtained from the vector Δri = riR.

This is derived as follows. Let a rigid assembly of N particles, Pi, i = 1, …, N, have coordinates ri. Choose R as a reference point and compute the moment of inertia around a line L defined by the unit vector through the reference point R, L(t) = R + t. The perpendicular vector from this line to the particle Pi is obtained from Δri by removing the component that projects onto .

\displaystyle \Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}-\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)\Delta \mathbf {r} _{i},
where E is the identity matrix, so as to avoid confusion with the inertia matrix, and T is the outer product matrix formed from the unit vector along the line L.

To relate this scalar moment of inertia to the inertia matrix of the body, introduce the skew-symmetric matrix [] such that []y = × y, then we have the identity

\displaystyle -\left[\mathbf {\hat {k}} \right]^{2}\equiv \left|\mathbf {\hat {k}} \right|^{2}\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)=\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}},

noting that is a unit vector.

The magnitude squared of the perpendicular vector is

\displaystyle {\begin{aligned}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}&=\left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}

The simplification of this equation uses the triple scalar product identity
\displaystyle \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),
where the dot and the cross products have been interchanged. Exchanging products, and simplifying by noting that Δri and are orthogonal:
\displaystyle {\begin{aligned}&\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(-\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&-\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&-\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}
Thus, the moment of inertia around the line L through R in the direction is obtained from the calculation
\displaystyle {\begin{aligned}I_{L}&=\left(\sum _{i=1}^{N}m_{i}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}\right)\\&=\left(-\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} \right)=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}
where IR is the moment of inertia matrix of the system relative to the reference point R.

This shows that the inertia matrix can be used to calculate the moment of inertia of a body around any specified rotation axis in the body.

 

輕舟已過

n04_inertia.ipynb

 

矣☆★