時間序列︰生成函數‧漸近展開︰白努利 □○《三》

數學證明追求邏輯嚴謹,因此常常讀來定義不斷符號滿篇。偶兒間讀到簡明扼要之定理推導,應當會樂於分享乎?特別介紹證明維基網頁給有興趣的讀者︰

Welcome to 𝖯𝗋𝖿𝖶𝗂𝗄𝗂!

Logo.png

ProofWiki is an online compendium of mathematical proofs! Our goal is the collection, collaboration and classification of mathematical proofs. If you are interested in helping create an online resource for math proofs feel free to register for an account. Thanks and enjoy!

If you have any questions, comments, or suggestions please post on the discussion page, or contact one of the administrators. Also, feel free to take a look at the frequently asked questions because you may not be the first with your idea.

To see what’s currently happening in the community, visit the community portal.

 

借著分析比較兩種維基版本上的證明︰

Faulhaber’s formula

Theorem

Let n and p be positive integers.

Then:

\sum \limits_{k = 1}^n k^p = \frac 1 {p + 1} \sum \limits_{i = 0}^p \left({-1}\right)^i \binom {p + 1} i B_i n^{p + 1 - i}

where Bn denotes the nth Bernoulli number.

Proof

Let x \ge 0 .

\sum \limits_{k = 0}^{n - 1} e^{k x} = \sum \limits_{k = 0}^{n - 1} \sum \limits_{p = 0}^\infty \frac {\left({k x}\right)^p} {p!} Power Series Expansion for Exponential Function

= \sum \limits_{p = 0}^\infty \left({\sum \limits_{k = 0}^{n - 1} k^p}\right) \frac {x^p} {p!} rearrangement is valid by Tonelli’s Theorem

We also have:

\sum \limits_{k = 0}^{n - 1} e^{k x} = \frac {1 - e^{n x} } {1 - e^x} Geometric Series

= \frac {e^{n x} - 1} x \frac x {e^x - 1}

= \sum \limits_{p = 0}^\infty \frac {n^{p + 1} x^p} {\left({p + 1}\right)!} \sum \limits_{p = 0}^\infty \frac {B_p x^p} {p!} by definition of Bernoulli Numbers

= \sum \limits_{p = 0}^\infty \sum \limits_{i = 0}^p \frac {n^{p + 1 - i} x^{p - i} } {\left({p + 1 - i}\right)!} \frac {B_i x^i} {i!} Cauchy Product

= \sum \limits_{p = 0}^\infty \left({\frac 1 {p + 1} \sum \limits_{i = 0}^p \binom {p + 1} i B_i n^{p + 1 - i} }\right) \frac {x^p} {p!}

By equating coefficients, we find that:

\sum \limits_{k = 0}^{n - 1} k^p = \frac 1 {p + 1} \sum \limits_{i = 0}^p \binom {p + 1} i B_i n^{p + 1 - i}

\implies \ \ \sum \limits_{k = 1}^n k^p = \frac 1 {p + 1} \sum \limits_{i = 0}^p \left({-1}\right)^i \binom {p + 1} i B_i n^{p + 1 - i} since B_1 = - \frac{1}{2} and Odd Bernoulli Numbers Vanish

───

Proof

Let

   S_{p}(n)=\sum_{k=1}^{n} k^p,

denote the sum under consideration for integer  p\ge 0.

Define the following exponential generating function with (initially) indeterminate  z

   G(z,n)=\sum_{p=0}^{\infty} S_{p}(n) \frac{1}{p!}z^p.

We find

  </span

This is an entire function in  z so that  z can be taken to be any complex number.

We next recall the exponential generating function for the Bernoulli polynomials  B_j(x)

   \frac{ze^{zx}}{e^{z}-1}=\sum_{j=0}^{\infty} B_j(x) \frac{z^j}{j!},

where  B_j=B_j(0) denotes the Bernoulli number (with the convention  B_{1}=-\frac{1}{2}). We obtain the Faulhaber formula by expanding the generating function as follows:

</span

Note that  B_j =0 for all odd  j>1. Hence some authors define  B_{1}=\frac{1}{2} so that the alternating factor  (-1)^j is absent.

───

 

或能釐清思路,得到樂趣耶!

如是者將能掌握白努利數的生成函數之多樣性吧!!??

Generating function

The general formula for the exponential generating function is

{\displaystyle {\frac {te^{nt}}{e^{t}-1}}=\sum _{m=0}^{\infty }{\frac {B_{m}(n)t^{m}}{m!}}.}

The choices n = 0 and n = 1 lead to

  {\displaystyle {\begin{aligned}n&=0:&{\frac {t}{e^{t}-1}}&=\sum _{m=0}^{\infty }{\frac {B_{m}^{-}t^{m}}{m!}}\\n&=1:&{\frac {t}{1-e^{-t}}}&=\sum _{m=0}^{\infty }{\frac {B_{m}^{-}(-t)^{m}}{m!}}.\end{aligned}}}

The (normal) generating function

  {\displaystyle z^{-1}\psi _{1}(z^{-1})=\sum _{m=0}^{\infty }B_{m}^{+}z^{m}}

is an asymptotic series. It contains the trigamma function ψ1.