GoPiGo 小汽車︰格點圖像算術《投影幾何》【五‧線性代數】《導引七‧變換組合 VIII‧⚄ 》

屠龍刀

屠龍刀

論語‧《陽貨

子之武城,聞弦歌之聲。夫子莞爾而笑,曰:「割雞焉用牛刀?」子游對曰:「昔者偃也聞諸夫子曰:『君子學道則愛人,小人學道則易使也。』」子曰:「二三子!偃之言是也。前言戲之耳。」

所 謂『相由心生』是說精神外顯的『形貌』從『用心方向』而來,這個『習焉不察』之內在『心相』,常可以用來分辨『行業』。一行有一行的規矩,百業有百業的訣竅,入了行,從了業,自然帶有某種『氣息』的吧!如何才能夠不著『相』?若可『無所住』而生其『心』,那麼既無『我心』何來『我相』的呢!!

那麼這個《子之武城》一事,是否有個『前言』對上『後語』,可分出『對錯好壞』的呢?也許有個『禮樂』之『理』和『禮樂』之『用』的差別,想那『子游』為武城宰,採用『禮樂』教化之道,孔夫子卻『莞爾』笑,豈有不『以子之言,擊子之語』的哩!然而夫子所謂『戲之』果真是說『割雞焉用牛刀?』是錯了嗎?恐是不樂見『禮樂』被當作了『名器』的吧!就像到了宋代的『存天理,去人欲』,導致『死生事小,失節事大』,終演成『禮教殺人』之憾事 !!於是

祇『』這樣『』,不『』那樣『使』,終究難了『用大』之道 ── 無用而不通達 ── ,如如不動,應事而動,因事制宜。

正說著『以正治國』和『以奇用兵』,『為學之法』與『用學之法 』的不同,也須避免那『紙上談兵』之過。此事《孫子兵法

地形‧第十

孫子曰:地形者、有者、有者、有者、有者、有者 。我可以往,彼可以來,曰通。通形者, 先居高陽,利糧道,以戰則利。可以往,難以返,曰掛。掛形者,敵無備,出而勝之,敵若有備,出而不勝,難以返,不利。我出而不利,彼出而不利,曰支 。支形 者,敵雖利我,我無出也,引而去之,令敵半出而擊之,利 。隘形者,我先居之,必盈之以待敵。若敵先居之,盈而勿從,不盈而從之。險形者,我先居之,必居高 陽以待敵;若敵先居之,引而去之,勿從也。遠形者,勢均,難以挑戰,戰而不利。凡此六者 ,地之道也,將之至任,不可不察也。

者、有者、有者、有者、有者、有者。凡此六者,非天之災,將之過也。夫勢均,以一擊十,曰走;卒強吏弱,曰馳;吏強卒弱,曰陷;大吏怒而不服,遇敵懟 而自戰,將不知其能,曰崩;將弱不嚴,教道不明,吏卒無常,陳兵縱橫,曰亂;將不能料敵,以少合衆,以弱擊強,兵無選鋒,曰北。凡此六者,敗之道也,將之 至任,不可不察也。

夫地形者,兵之助也。料敵制勝,計險厄遠近,上將之道也。知此而用戰者必勝,不知此而用戰者必敗。故戰道必勝,主曰無戰,必戰可也;戰道不勝,主曰必戰,無戰可也。故進不求名,退不避罪 ,唯民是保,而利合於主,國之寶也。

視卒如嬰兒,故可以與之赴深溪;視卒如愛子,故可與之俱死 。厚而不能使,愛而不能令,亂而不能治,譬若驕子,不可用也。

知吾卒之可以擊,而不知敵之不可擊,勝之半也;知敵之可擊,而不知吾卒之不可以擊,勝之半也;知敵之可擊,知吾卒之可以擊,而不知地形之不可以戰,勝之半也。故知兵者,動而不迷,舉而不窮。故曰:知彼知己,勝乃不殆;知天知地,勝乃可全。

講的好。

─── 《字詞網絡︰ WordNet 《六》 相 □ 而用 ○ !!

 

假使說『形勢』比人強!那麼『形式』無所言耶?

就算『滿天變數』!!只要『彼此相關 』??並非『無所拘束』乎 !!??

Specifying a transformation by three points

Given a set of three distinct points z1, z2, z3 on the Riemann sphere and a second set of distinct points w1, w2, w3, there exists precisely one Möbius transformation f(z) with f(zi) = wi for i = 1,2,3. (In other words: the action of the Möbius group on the Riemann sphere is sharply 3-transitive.) There are several ways to determine f(z) from the given sets of points.

Mapping first to 0, 1, ∞

It is easy to check that the Möbius transformation

f_{1}(z)={\frac {(z-z_{1})(z_{2}-z_{3})}{(z-z_{3})(z_{2}-z_{1})}}

with matrix

{\mathfrak {H}}_{1}={\begin{pmatrix}z_{2}-z_{3}&-z_{1}(z_{2}-z_{3})\\z_{2}-z_{1}&-z_{3}(z_{2}-z_{1})\end{pmatrix}}

maps z1, z2, z3 to 0, 1, ∞, respectively. If one of the zi is ∞, then the proper formula for  {\mathfrak {H}}_{1} is obtained from the above one by first dividing all entries by zi and then taking the limit zi → ∞.

If  {\mathfrak {H}}_{2} is similarly defined to map w1, w2, w3 to 0, 1, ∞, then the matrix  {\mathfrak {H}} which maps z1,2,3 to w1,2,3 becomes

  {\mathfrak {H}}={\mathfrak {H}}_{2}^{{-1}}{\mathfrak {H}}_{1}.

The stabilizer of {0, 1, ∞} (as an unordered set) is a subgroup known as the anharmonic group.

 

縱使只一『式』\frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)} ,亦『勢』必將有所決矣︰

 

由於實難知能否破『迷惘』??!!

故而明指『任意』『三相異點』 z_1,z_2,z_30,1,\infty 的『投射』

{\mathfrak {H}}_{1} = \left( \begin{array}{cc} z_2 - z_3 & - z_1(z_2-z_3) \\ z_2 - z_1 & -z_3(z_2-z_1) \end{array} \right)

真地存在呦☆

應該怎麼講

\left( \begin{array}{cc} \frac{z_2 - z_3}{z_2-z_1} & - \frac{z_1(z_2-z_3)}{z_2-z_1} \\ 1 & -z_3 \end{array} \right)

之所指哩★

如是再借

{\mathfrak {H}}_{2} = \left( \begin{array}{cc} w_2 - w_3 & - w_1(w_2-w_3) \\ w_2 - w_1 & -w_3(w_2-w_1) \end{array} \right)

,求得 {{\mathfrak {H}}_{2}}^{-1} \cdot  {\mathfrak {H}}_{1}

豈非『任意』三點『投射』到『任意』三點呀◎

pi@raspberrypi:~ $ ipython3
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 
Type "copyright", "credits" or "license" for more information.

IPython 2.3.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: from sympy import *

In [2]: init_printing()

In [3]: z1,z2,z3,w1,w2,w3 = symbols('z1,z2,z3,w1,w2,w3')

In [4]: H1 = Matrix([[z2-z3,-z1*(z2-z3)],[z2-z1,-z3*(z2-z1)]])

In [5]: H1
Out[5]: 
⎡z₂ - z₃   -z₁⋅(z₂ - z₃) ⎤
⎢                        ⎥
⎣-z₁ + z₂  -z₃⋅(-z₁ + z₂)⎦

In [6]: H2 = Matrix([[w2-w3,-w1*(w2-w3)],[w2-w1,-w3*(w2-w1)]])

In [7]: H2
Out[7]: 
⎡w₂ - w₃   -w₁⋅(w₂ - w₃) ⎤
⎢                        ⎥
⎣-w₁ + w₂  -w₃⋅(-w₁ + w₂)⎦

In [8]: H2反矩陣 = H2.inv()

In [9]: H2反矩陣 = Matrix([[H2反矩陣[0,0].simplify(), H2反矩陣[0,1].simplify()],[H2反矩陣[1,0].simplify(), H2反矩陣[1,1].simplify()]])

In [10]: H2反矩陣
Out[10]: 
⎡        -w₃                  -w₁        ⎤
⎢───────────────────  ───────────────────⎥
⎢(w₁ - w₃)⋅(w₂ - w₃)  (w₁ - w₂)⋅(w₁ - w₃)⎥
⎢                                        ⎥
⎢        -1                   -1         ⎥
⎢───────────────────  ───────────────────⎥
⎣(w₁ - w₃)⋅(w₂ - w₃)  (w₁ - w₂)⋅(w₁ - w₃)⎦

In [11]: H = H2反矩陣 * H1

In [12]: H[0,0].simplify()
Out[12]: 
w₁⋅(w₂ - w₃)⋅(z₁ - z₂) - w₃⋅(w₁ - w₂)⋅(z₂ - z₃)
───────────────────────────────────────────────
         (w₁ - w₂)⋅(w₁ - w₃)⋅(w₂ - w₃)         

In [13]: H[0,1].simplify()
Out[13]: 
-w₁⋅z₃⋅(w₂ - w₃)⋅(z₁ - z₂) + w₃⋅z₁⋅(w₁ - w₂)⋅(z₂ - z₃)
──────────────────────────────────────────────────────
            (w₁ - w₂)⋅(w₁ - w₃)⋅(w₂ - w₃)             

In [14]: H[1,0].simplify()
Out[14]: 
(w₁ - w₂)⋅(-z₂ + z₃) + (w₂ - w₃)⋅(z₁ - z₂)
──────────────────────────────────────────
      (w₁ - w₂)⋅(w₁ - w₃)⋅(w₂ - w₃)       

In [15]: H[1,1].simplify()
Out[15]: 
z₁⋅(w₁ - w₂)⋅(z₂ - z₃) - z₃⋅(w₂ - w₃)⋅(z₁ - z₂)
───────────────────────────────────────────────
         (w₁ - w₂)⋅(w₁ - w₃)⋅(w₂ - w₃)         

In [16]: H[1,1].simplify() / H[1,0].simplify()
Out[16]: 
z₁⋅(w₁ - w₂)⋅(z₂ - z₃) - z₃⋅(w₂ - w₃)⋅(z₁ - z₂)
───────────────────────────────────────────────
   (w₁ - w₂)⋅(-z₂ + z₃) + (w₂ - w₃)⋅(z₁ - z₂)  

In [17]: